Recently, Wu et al(2019 Int. J. Theor. Phys. 58 1854) found a serious information leakage problem in Ye and Ji’s quantum private comparison protocol(2017 Int. J. Theor. Phys. 561517), that is, a malicious participant...Recently, Wu et al(2019 Int. J. Theor. Phys. 58 1854) found a serious information leakage problem in Ye and Ji’s quantum private comparison protocol(2017 Int. J. Theor. Phys. 561517), that is, a malicious participant can steal another’s secret data without being detected through an active attack means. In this paper, we show that Wu et al’s active attack is also effective for several other existing protocols, including the ones proposed by Ji et al and Zha et al(2016 Commun. Theor. Phys. 65 711;2018 Int. J. Theor. Phys. 57 3874). In addition,we propose what a passive attack means, which is different from Wu et al’s active attack in that the malicious participant can easily steal another’s secret data only by using his own secret data after finishing the protocol, instead of stealing the data by forging identities when executing the protocol. Furthermore, we find that several other existing quantum private comparison protocols also have such an information leakage problem. In response to the problem, we propose a simple solution, which is more efficient than the ones proposed by Wu et al, because it does not consume additional classical and quantum resources.展开更多
基金supported by the State Key Program of National Natural Science Foundation of China under grant 61332019the Major State Basic Research Development Program of China(973 Program)under grant 2014CB340601+1 种基金the National Science Foundation of China under grant 61202386 and grant 61402339the National Cryptography Development Fund of China under grant MMJJ201701304。
文摘Recently, Wu et al(2019 Int. J. Theor. Phys. 58 1854) found a serious information leakage problem in Ye and Ji’s quantum private comparison protocol(2017 Int. J. Theor. Phys. 561517), that is, a malicious participant can steal another’s secret data without being detected through an active attack means. In this paper, we show that Wu et al’s active attack is also effective for several other existing protocols, including the ones proposed by Ji et al and Zha et al(2016 Commun. Theor. Phys. 65 711;2018 Int. J. Theor. Phys. 57 3874). In addition,we propose what a passive attack means, which is different from Wu et al’s active attack in that the malicious participant can easily steal another’s secret data only by using his own secret data after finishing the protocol, instead of stealing the data by forging identities when executing the protocol. Furthermore, we find that several other existing quantum private comparison protocols also have such an information leakage problem. In response to the problem, we propose a simple solution, which is more efficient than the ones proposed by Wu et al, because it does not consume additional classical and quantum resources.