As a hot spot of next generation network, research over resource control has been carried out for years both in China and abroad. With a gradual progress in standardization, this field presents new development trends ...As a hot spot of next generation network, research over resource control has been carried out for years both in China and abroad. With a gradual progress in standardization, this field presents new development trends and features. Based on latest progresses in standardization promoted by ITU-T, TISPAN and 3GPP, new technologies concerned with resource control are introduced. Considering the problems faced in standardization deployment, relevant resource control functions are also analyzed in this article.展开更多
On June 27th, the China Construction Ministry (CCM) announced that China will intensify efforts to implement the supervision of construction standards with the goal of promoting energy saving practices. By 2010, u... On June 27th, the China Construction Ministry (CCM) announced that China will intensify efforts to implement the supervision of construction standards with the goal of promoting energy saving practices. By 2010, urban construction projects are expected to achieve energy savings of 50%, and by 2020 to save 351 million tons of coal.……展开更多
In this paper we study inviscid and viscid Burgers equations with initial conditions in the half plane . First we consider the Burgers equations with initial conditions admitting two and three shocks and use the HOPF-...In this paper we study inviscid and viscid Burgers equations with initial conditions in the half plane . First we consider the Burgers equations with initial conditions admitting two and three shocks and use the HOPF-COLE transformation to linearize the problems and explicitly solve them. Next we study the Burgers equation and solve the initial value problem for it. We study the asymptotic behavior of solutions and we show that the exact solution of boundary value problem for viscid Burgers equation as viscosity parameter is sufficiently small approach the shock type solution of boundary value problem for inviscid Burgers equation. We discuss both confluence and interacting shocks. In this article a new approach has been developed to find the exact solutions. The results are formulated in classical mathematics and proved with infinitesimal technique of non standard analysis.展开更多
文摘As a hot spot of next generation network, research over resource control has been carried out for years both in China and abroad. With a gradual progress in standardization, this field presents new development trends and features. Based on latest progresses in standardization promoted by ITU-T, TISPAN and 3GPP, new technologies concerned with resource control are introduced. Considering the problems faced in standardization deployment, relevant resource control functions are also analyzed in this article.
文摘 On June 27th, the China Construction Ministry (CCM) announced that China will intensify efforts to implement the supervision of construction standards with the goal of promoting energy saving practices. By 2010, urban construction projects are expected to achieve energy savings of 50%, and by 2020 to save 351 million tons of coal.……
文摘In this paper we study inviscid and viscid Burgers equations with initial conditions in the half plane . First we consider the Burgers equations with initial conditions admitting two and three shocks and use the HOPF-COLE transformation to linearize the problems and explicitly solve them. Next we study the Burgers equation and solve the initial value problem for it. We study the asymptotic behavior of solutions and we show that the exact solution of boundary value problem for viscid Burgers equation as viscosity parameter is sufficiently small approach the shock type solution of boundary value problem for inviscid Burgers equation. We discuss both confluence and interacting shocks. In this article a new approach has been developed to find the exact solutions. The results are formulated in classical mathematics and proved with infinitesimal technique of non standard analysis.