A new 3 D fusion tracking system for an anti air missile homing system based on radar and imaging sensor is developed. The attitude measurements from the imaging sensor are used to improve the tracking performance. ...A new 3 D fusion tracking system for an anti air missile homing system based on radar and imaging sensor is developed. The attitude measurements from the imaging sensor are used to improve the tracking performance. Computer simulation results show that the tracking system greatly reduces the tracking errors compared with trackers without attitude measurements, and achieves small miss distances even when the target has a big maneuver.展开更多
Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper ...Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper focuses on the tracking algo- rithm for hypothesis generation, hypothesis probability calculation, hypotheses reduction and pruning and other sectors. From an engineering point of view, a technique called the linear assignment problem (LAP) used in the implementation of M-best feasible hypotheses generation, the number of the hypotheses is relatively small compared with the total number that may exist in each scan, also the N-scan back pruning is used, the algorithm's efficiency and practicality have been improved. Monte Carlo simulation results show that the proposed algorithm can track the boost phase of multiple ballistic missiles and it has a good tracking performance compared with joint probability data association (JPDA).展开更多
The alpha–beta filter algorithm has been widely researched for various applications,for example,navigation and target tracking systems.To improve the dynamic performance of the alpha–beta filter algorithm,a new pred...The alpha–beta filter algorithm has been widely researched for various applications,for example,navigation and target tracking systems.To improve the dynamic performance of the alpha–beta filter algorithm,a new prediction learning model is proposed in this study.The proposed model has two main components:(1)the alpha–beta filter algorithm is the main prediction module,and(2)the learning module is a feedforward artificial neural network(FF‐ANN).Furthermore,the model uses two inputs,temperature sensor and humidity sensor data,and a prediction algorithm is used to predict actual sensor readings from noisy sensor readings.Using the novel proposed technique,prediction accuracy is significantly improved while adding the feed‐forward backpropagation neural network,and also reduces the root mean square error(RMSE)and mean absolute error(MAE).We carried out different experiments with different experimental setups.The proposed model performance was evaluated with the traditional alpha–beta filter algorithm and other algorithms such as the Kalman filter.A higher prediction accuracy was achieved,and the MAE and RMSE were 35.1%–38.2%respectively.The final proposed model results show increased performance when compared to traditional methods.展开更多
Based on continuous systems, the tracking problems for state regulator are discussed in this paper. The disadvantages of the current state regulators are pointed out with integrator, and a new kind of state PI regulat...Based on continuous systems, the tracking problems for state regulator are discussed in this paper. The disadvantages of the current state regulators are pointed out with integrator, and a new kind of state PI regulator is presented.展开更多
In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,non...In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,nonlinear functions,and exogenous disturbances under switching communication topologies.To solve this problem,a distributed fuzzy fault-tolerant controller is proposed for each follower by adaptive mechanisms to track the state of the leader.Furthermore,the fuzzy logic system is utilized to approximate the unknown nonlinear dynamics.An error estimator is introduced between the mismatched parameter matrix and the input matrix.Then,a selective adaptive law with relative state information is adopted and applied.When calculating the Lyapunov function’s derivative,the coupling terms related to consensus error and mismatched parameter uncertainties can be eliminated.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocol.展开更多
in order to give another solution to the tracking problems of parametric strict feedback form systems, new robust controllers are designed which has no need to identify the unknown system parameters. The global boun...in order to give another solution to the tracking problems of parametric strict feedback form systems, new robust controllers are designed which has no need to identify the unknown system parameters. The global boundness of all the signals in the control system (that is x, y, u) can be guaranteed, in addition, if the upper bounds of the unknown parameters are known a priori, the output tracking error can be made arbitrarily small. The new robust controllers can be applied directly to the case that the parameters are time varying and bounded, while the existing adaptive controllers can not.展开更多
文摘A new 3 D fusion tracking system for an anti air missile homing system based on radar and imaging sensor is developed. The attitude measurements from the imaging sensor are used to improve the tracking performance. Computer simulation results show that the tracking system greatly reduces the tracking errors compared with trackers without attitude measurements, and achieves small miss distances even when the target has a big maneuver.
文摘Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper focuses on the tracking algo- rithm for hypothesis generation, hypothesis probability calculation, hypotheses reduction and pruning and other sectors. From an engineering point of view, a technique called the linear assignment problem (LAP) used in the implementation of M-best feasible hypotheses generation, the number of the hypotheses is relatively small compared with the total number that may exist in each scan, also the N-scan back pruning is used, the algorithm's efficiency and practicality have been improved. Monte Carlo simulation results show that the proposed algorithm can track the boost phase of multiple ballistic missiles and it has a good tracking performance compared with joint probability data association (JPDA).
基金supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2020‐0‐01441,Artificial Intelligence Convergence Research Center(Chungnam National University))“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS‐004).
文摘The alpha–beta filter algorithm has been widely researched for various applications,for example,navigation and target tracking systems.To improve the dynamic performance of the alpha–beta filter algorithm,a new prediction learning model is proposed in this study.The proposed model has two main components:(1)the alpha–beta filter algorithm is the main prediction module,and(2)the learning module is a feedforward artificial neural network(FF‐ANN).Furthermore,the model uses two inputs,temperature sensor and humidity sensor data,and a prediction algorithm is used to predict actual sensor readings from noisy sensor readings.Using the novel proposed technique,prediction accuracy is significantly improved while adding the feed‐forward backpropagation neural network,and also reduces the root mean square error(RMSE)and mean absolute error(MAE).We carried out different experiments with different experimental setups.The proposed model performance was evaluated with the traditional alpha–beta filter algorithm and other algorithms such as the Kalman filter.A higher prediction accuracy was achieved,and the MAE and RMSE were 35.1%–38.2%respectively.The final proposed model results show increased performance when compared to traditional methods.
文摘Based on continuous systems, the tracking problems for state regulator are discussed in this paper. The disadvantages of the current state regulators are pointed out with integrator, and a new kind of state PI regulator is presented.
基金This work was supported by Tianjin Natural Science Foundation of China(20JCYBJC01060,20JCQNJC01450)the National Natural Science Foundation of China(61973175)Tianjin Postgraduate Scientific Research and Innovation Project(2020YJSZXB03,2020YJSZXB12).
文摘In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,nonlinear functions,and exogenous disturbances under switching communication topologies.To solve this problem,a distributed fuzzy fault-tolerant controller is proposed for each follower by adaptive mechanisms to track the state of the leader.Furthermore,the fuzzy logic system is utilized to approximate the unknown nonlinear dynamics.An error estimator is introduced between the mismatched parameter matrix and the input matrix.Then,a selective adaptive law with relative state information is adopted and applied.When calculating the Lyapunov function’s derivative,the coupling terms related to consensus error and mismatched parameter uncertainties can be eliminated.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocol.
文摘in order to give another solution to the tracking problems of parametric strict feedback form systems, new robust controllers are designed which has no need to identify the unknown system parameters. The global boundness of all the signals in the control system (that is x, y, u) can be guaranteed, in addition, if the upper bounds of the unknown parameters are known a priori, the output tracking error can be made arbitrarily small. The new robust controllers can be applied directly to the case that the parameters are time varying and bounded, while the existing adaptive controllers can not.