期刊文献+
共找到16,972篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of Health Education with Problem-Based Learning Approaches on the Knowledge, Attitude, Practice and Coping Skills of Women with High-Risk Pregnancies in Plateau Areas
1
作者 Ying Wu Suolang Sezhen +5 位作者 Renqing Yuzhen Hong Wei Zhijuan Zhan Baima Hongying Yuhong Zhang Lihong Liu 《Open Journal of Nursing》 2024年第5期192-199,共8页
Objective: Given the unique cultural background, way of life, and physical environment of the Tibetan Plateau, this study aims to investigate the effects of health education using problem-based learning (PBL) approach... Objective: Given the unique cultural background, way of life, and physical environment of the Tibetan Plateau, this study aims to investigate the effects of health education using problem-based learning (PBL) approaches on the knowledge, attitude, practice, and coping skills of women with high-risk pregnancies in this region. Methods: 76 high-risk pregnancy cases were enrolled at Tibet’s Linzhi People’s Hospital between September 2023 and April 2024. 30 patients admitted between September 2023 and December 2023 were selected as the control group and were performed with regular patient education. 46 patients admitted between January 2024 and April 2024 were selected as the observation group and were performed regular patient education with problem-based learning approaches. Two groups’ performance on their health knowledge, attitude, practice and coping skills before and after interventions were evaluated, and patient satisfaction were measured at the end of the study. Results: There was no statistical significance (P P P Conclusions: Health education with problem-based learning approaches is worth promoting as it can help high-risk pregnant women in plateau areas develop better health knowledge, attitude and practice and healthier coping skills. Also, it can improve patient sanctification. 展开更多
关键词 Plateau Areas Patients with High-Risk Pregnancies problem-based learning Health Education Health Knowledge Attitude and Practice Coping Skills
下载PDF
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization
2
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
下载PDF
Exploring the Application Effect of Flipped Classroom Combined with Problem-Based Learning Teaching Method in Clinical Skills Teaching of Standardized Training for Resident Doctors of Traditional Chinese Medicine 被引量:1
3
作者 Jingjing Tang 《Journal of Biosciences and Medicines》 CAS 2023年第2期169-176,共8页
Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese M... Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese Medicine. Methods: The study used the experimental control method. The study lasted from September to November 2022. The subjects of this study were 49 students of standardized training for resident doctors of traditional Chinese Medicine from grades 2020, 2021 and 2022 of Dazhou integrated TCM & Western Medicine Hospital. They were randomly divided into experiment group (25) and control group (24). The experiment group adopted flipped classroom combined with problem-based learning teaching method, and the control group adopted traditional teaching method. The teaching content was 4 basic clinical skill projects, including four diagnoses of traditional Chinese Medicine, cardiopulmonary resuscitation, dressing change procedure, acupuncture and massage. The evaluation method was carried out by comparing the students’ performance and a self-designed questionnaire was used to investigate the students’ evaluation of the teaching method. Results: The test scores of total scores in the experimental group (90.12 ± 5.89) were all higher than those in the control group (81.47 ± 7.96) (t = 4.53, P P Conclusions: The teaching process of the flipped classroom combined with problem-based learning teaching method is conducive to improving the efficiency of classroom teaching, cultivating students’ self-learning ability, and enhancing students’ willingness to learn. 展开更多
关键词 Standardized Training for Resident Doctors of Traditional Chinese Medicine Clinical Skills Teaching Flipped Classroom problem-based learning Teaching Method
下载PDF
Learning-Based Metaheuristic Approach for Home Healthcare Optimization Problem
4
作者 Mariem Belhor Adnen El-Amraoui +1 位作者 Abderrazak Jemai François Delmotte 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期1-19,共19页
This research focuses on the home health care optimization problem that involves staff routing and scheduling problems.The considered problem is an extension of multiple travelling salesman problem.It consists of find... This research focuses on the home health care optimization problem that involves staff routing and scheduling problems.The considered problem is an extension of multiple travelling salesman problem.It consists of finding the shortest path for a set of caregivers visiting a set of patients at their homes in order to perform various tasks during a given horizon.Thus,a mixed-integer linear programming model is proposed to minimize the overall service time performed by all caregivers while respecting the workload balancing constraint.Nevertheless,when the time horizon become large,practical-sized instances become very difficult to solve in a reasonable computational time.Therefore,a new Learning Genetic Algorithm for mTSP(LGA-mTSP)is proposed to solve the problem.LGA-mTSP is composed of a new genetic algorithm for mTSP,combined with a learning approach,called learning curves.Learning refers to that caregivers’productivity increases as they gain more experience.Learning curves approach is considered as a way to save time and costs.Simulation results show the efficiency of the proposed approach and the impact of learning curve strategy to reduce service times. 展开更多
关键词 Home healthcare scheduling and routing problem OPTIMIZATION multiple travelling salesman problem learning curves genetic algorithm
下载PDF
Prediction of Damping Capacity Demand in Seismic Base Isolators via Machine Learning
5
作者 Ayla Ocak Umit Isıkdag +3 位作者 Gebrail Bekdas Sinan Melih Nigdeli Sanghun Kim ZongWoo Geem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2899-2924,共26页
Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effe... Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity. 展开更多
关键词 Vibration control base isolation machine learning damping capacity
下载PDF
Data-Driven Learning Control Algorithms for Unachievable Tracking Problems
6
作者 Zeyi Zhang Hao Jiang +1 位作者 Dong Shen Samer S.Saab 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期205-218,共14页
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in... For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings. 展开更多
关键词 Data-driven algorithms incomplete information iterative learning control gradient information unachievable problems
下载PDF
Deep Reinforcement Learning Solves Job-shop Scheduling Problems
7
作者 Anjiang Cai Yangfan Yu Manman Zhao 《Instrumentation》 2024年第1期88-100,共13页
To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transfo... To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transformed into Markov decision process,and six state features are designed to improve the state feature representation by using two-way scheduling method,including four state features that distinguish the optimal action and two state features that are related to the learning goal.An extended variant of graph isomorphic network GIN++is used to encode disjunction graphs to improve the performance and generalization ability of the model.Through iterative greedy algorithm,random strategy is generated as the initial strategy,and the action with the maximum information gain is selected to expand it to optimize the exploration ability of Actor-Critic algorithm.Through validation of the trained policy model on multiple public test data sets and comparison with other advanced DRL methods and scheduling rules,the proposed method reduces the minimum average gap by 3.49%,5.31%and 4.16%,respectively,compared with the priority rule-based method,and 5.34%compared with the learning-based method.11.97%and 5.02%,effectively improving the accuracy of DRL to solve the approximate solution of JSSP minimum completion time. 展开更多
关键词 job shop scheduling problems deep reinforcement learning state characteristics policy network
下载PDF
PBL(Problem-based Learning)教学法道路规划与几何设计教学中的应用与探索 被引量:1
8
作者 张兰芳 方守恩 王俊骅 《教育教学论坛》 2016年第39期127-128,共2页
立足于道路规划与几何设计信息量大,涉及专业基础知识广、实践性强等特点,将PBL教学法在教学中进行了应用与探索,从教师设计问题、组建学习小组、问题探索与交流、教师总结评价等方面进行了教学设计和应用研究,实践证明PBL教学有助于提... 立足于道路规划与几何设计信息量大,涉及专业基础知识广、实践性强等特点,将PBL教学法在教学中进行了应用与探索,从教师设计问题、组建学习小组、问题探索与交流、教师总结评价等方面进行了教学设计和应用研究,实践证明PBL教学有助于提高学生的自主创新学习能力及学习的积极性,显著提升了教学效果。 展开更多
关键词 PBL(problem based learning)教学法 道路规划与几何设计 自主学习
下载PDF
Triplet Label Based Image Retrieval Using Deep Learning in Large Database 被引量:1
9
作者 K.Nithya V.Rajamani 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2655-2666,共12页
Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wi... Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wise label similarity is used tofind the matching images from the database.But this method lacks of limited propose code and weak execution of misclassified images.In order to get-rid of the above problem,a novel triplet based label that incorporates context-spatial similarity measure is proposed.A Point Attention Based Triplet Network(PABTN)is introduced to study propose code that gives maximum discriminative ability.To improve the performance of ranking,a corre-lating resolutions for the classification,triplet labels based onfindings,a spatial-attention mechanism and Region Of Interest(ROI)and small trial information loss containing a new triplet cross-entropy loss are used.From the experimental results,it is shown that the proposed technique exhibits better results in terms of mean Reciprocal Rank(mRR)and mean Average Precision(mAP)in the CIFAR-10 and NUS-WIPE datasets. 展开更多
关键词 Image retrieval deep learning point attention based triplet network correlating resolutions classification region of interest
下载PDF
Shallow water bathymetry based on a back propagation neural network and ensemble learning using multispectral satellite imagery
10
作者 Sensen Chu Liang Cheng +4 位作者 Jian Cheng Xuedong Zhang Jie Zhang Jiabing Chen Jinming Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期154-165,共12页
The back propagation(BP)neural network method is widely used in bathymetry based on multispectral satellite imagery.However,the classical BP neural network method faces a potential problem because it easily falls into... The back propagation(BP)neural network method is widely used in bathymetry based on multispectral satellite imagery.However,the classical BP neural network method faces a potential problem because it easily falls into a local minimum,leading to model training failure.This study confirmed that the local minimum problem of the BP neural network method exists in the bathymetry field and cannot be ignored.Furthermore,to solve the local minimum problem of the BP neural network method,a bathymetry method based on a BP neural network and ensemble learning(BPEL)is proposed.First,the remote sensing imagery and training sample were used as input datasets,and the BP method was used as the base learner to produce multiple water depth inversion results.Then,a new ensemble strategy,namely the minimum outlying degree method,was proposed and used to integrate the water depth inversion results.Finally,an ensemble bathymetric map was acquired.Anda Reef,northeastern Jiuzhang Atoll,and Pingtan coastal zone were selected as test cases to validate the proposed method.Compared with the BP neural network method,the root-mean-square error and the average relative error of the BPEL method can reduce by 0.65–2.84 m and 16%–46%in the three test cases at most.The results showed that the proposed BPEL method could solve the local minimum problem of the BP neural network method and obtain highly robust and accurate bathymetric maps. 展开更多
关键词 BATHYMETRY back propagation neural network ensemble learning local minimum problem multispectral satellite imagery
下载PDF
Aspect based sentiment analysis using multi-criteria decision-making and deep learning under COVID-19 pandemic in India
11
作者 Rakesh Dutta Nilanjana Das +1 位作者 Mukta Majumder Biswapati Jana 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第1期219-234,共16页
The COVID-19 pandemic has a significant impact on the global economy and health.While the pandemic continues to cause casualties in millions,many countries have gone under lockdown.During this period,people have to st... The COVID-19 pandemic has a significant impact on the global economy and health.While the pandemic continues to cause casualties in millions,many countries have gone under lockdown.During this period,people have to stay within walls and become more addicted towards social networks.They express their emotions and sympathy via these online platforms.Thus,popular social media(Twitter and Facebook)have become rich sources of information for Opinion Mining and Sentiment Analysis on COVID-19-related issues.We have used Aspect Based Sentiment Analysis to anticipate the polarity of public opinion underlying different aspects from Twitter during lockdown and stepwise unlock phases.The goal of this study is to find the feelings of Indians about the lockdown initiative taken by the Government of India to stop the spread of Coronavirus.India-specific COVID-19 tweets have been annotated,for analysing the sentiment of common public.To classify the Twitter data set a deep learning model has been proposed which has achieved accuracies of 82.35%for Lockdown and 83.33%for Unlock data set.The suggested method outperforms many of the contemporary approaches(long shortterm memory,Bi-directional long short-term memory,Gated Recurrent Unit etc.).This study highlights the public sentiment on lockdown and stepwise unlocks,imposed by the Indian Government on various aspects during the Corona outburst. 展开更多
关键词 aspect based sentiment analysis bi-directional gated recurrent unit COVID-19 deep learning k-means clustering multi-criteria decision-making natural language processing
下载PDF
Ensemble Based Learning with Accurate Motion Contrast Detection
12
作者 M.Indirani S.Shankar 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1657-1674,共18页
Recent developments in computer vision applications have enabled detection of significant visual objects in video streams.Studies quoted in literature have detected objects from video streams using Spatiotemporal Parti... Recent developments in computer vision applications have enabled detection of significant visual objects in video streams.Studies quoted in literature have detected objects from video streams using Spatiotemporal Particle Swarm Optimization(SPSOM)and Incremental Deep Convolution Neural Networks(IDCNN)for detecting multiple objects.However,the study considered opticalflows resulting in assessing motion contrasts.Existing methods have issue with accuracy and error rates in motion contrast detection.Hence,the overall object detection performance is reduced significantly.Thus,consideration of object motions in videos efficiently is a critical issue to be solved.To overcome the above mentioned problems,this research work proposes a method involving ensemble approaches to and detect objects efficiently from video streams.This work uses a system modeled on swarm optimization and ensemble learning called Spatiotemporal Glowworm Swarm Optimization Model(SGSOM)for detecting multiple significant objects.A steady quality in motion contrasts is maintained in this work by using Chebyshev distance matrix.The proposed system achieves global optimization in its multiple object detection by exploiting spatial/temporal cues and local constraints.Its experimental results show that the proposed system scores 4.8%in Mean Absolute Error(MAE)while achieving 86%in accuracy,81.5%in precision,85%in recall and 81.6%in F-measure and thus proving its utility in detecting multiple objects. 展开更多
关键词 Multiple significant objects ensemble based learning modified pooling layer based convolutional neural network spatiotemporal glowworm swarm optimization model
下载PDF
A hybrid agent⁃based machine learning method for human⁃centred energy consumption prediction
13
作者 Qingyao Qiao 《建筑节能(中英文)》 CAS 2023年第3期41-41,共1页
Occupant behaviour has significant impacts on the performance of machine learning algorithms when predicting building energy consumption.Due to a variety of reasons(e.g.,underperforming building energy management syst... Occupant behaviour has significant impacts on the performance of machine learning algorithms when predicting building energy consumption.Due to a variety of reasons(e.g.,underperforming building energy management systems or restrictions due to privacy policies),the availability of occupational data has long been an obstacle that hinders the performance of machine learning algorithms in predicting building energy consumption.Therefore,this study proposed an agent⁃based machine learning model whereby agent⁃based modelling was employed to generate simulated occupational data as input features for machine learning algorithms for building energy consumption prediction.Boruta feature selection was also introduced in this study to select all relevant features.The results indicated that the performances of machine learning algorithms in predicting building energy consumption were significantly improved when using simulated occupational data,with even greater improvements after conducting Boruta feature selection. 展开更多
关键词 Building energy consumption PREDICTION Machine learning Agent⁃based modelling Occupant behaviour
下载PDF
Research on Vocabulary Learning in English Classroom Teaching Based on Corpus
14
作者 YU Xia 《Sino-US English Teaching》 2023年第1期27-32,共6页
The difficulty of learning English is not only related to interest,but also related to the correctness of learning methods.Especially in English teaching,a comprehensive and in-depth mastery of vocabulary can improve ... The difficulty of learning English is not only related to interest,but also related to the correctness of learning methods.Especially in English teaching,a comprehensive and in-depth mastery of vocabulary can improve the level of English language,learn English knowledge better,and improve the level of cross-cultural communication.The application of corpus in English classroom vocabulary teaching can provide more educational space for vocabulary teaching,enrich teaching methods,and at the same time,facilitate students to learn vocabulary and lay a foundation for learning English language.To this end,this article first describes the important role of corpus application in vocabulary learning in English classroom teaching.Secondly,it discusses the difficulties of vocabulary learning and the factors that affect the quality of learning.Finally,in order to enhance the learning effect of students and improve the teaching level,several learning strategies have been formulated to continuously highlight the practicality of the corpus. 展开更多
关键词 CORPUS English classroom teaching vocabulary learning IMPORTANCE problemS measures
下载PDF
A Research of the Course “Taishan Cultural Communication with the World” under Blended Learning Model and Outcome-Based Education Concept
15
作者 Fen Tian 《Open Journal of Applied Sciences》 CAS 2023年第4期529-537,共9页
The course “Taishan Cultural Communication with the World” has been online and offline teaching and learning for two terms based on the theoretical ideas: Blended Learning and Outcome-Based Education. This paper use... The course “Taishan Cultural Communication with the World” has been online and offline teaching and learning for two terms based on the theoretical ideas: Blended Learning and Outcome-Based Education. This paper uses the data from one semester to state how to carry out the program and the good results. At the same time disadvantages are also the points that should be taken into consideration. From the teaching and learning practice, students have benefited from the online videos, complementary materials and discussions;they need to be guided as well, especially the guidance offline to make up. Furthermore, the balance of time online and offline is a great challenge. 展开更多
关键词 Blended learning Outcome-based Education Taishan Cultural Communication with the World
下载PDF
An Overview and Experimental Study of Learning-Based Optimization Algorithms for the Vehicle Routing Problem 被引量:4
16
作者 Bingjie Li Guohua Wu +2 位作者 Yongming He Mingfeng Fan Witold Pedrycz 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1115-1138,共24页
The vehicle routing problem(VRP)is a typical discrete combinatorial optimization problem,and many models and algorithms have been proposed to solve the VRP and its variants.Although existing approaches have contribute... The vehicle routing problem(VRP)is a typical discrete combinatorial optimization problem,and many models and algorithms have been proposed to solve the VRP and its variants.Although existing approaches have contributed significantly to the development of this field,these approaches either are limited in problem size or need manual intervention in choosing parameters.To solve these difficulties,many studies have considered learning-based optimization(LBO)algorithms to solve the VRP.This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.We performed a statistical analysis of the reviewed articles from various aspects and designed three experiments to evaluate the performance of four representative LBO algorithms.Finally,we conclude the applicable types of problems for different LBO algorithms and suggest directions in which researchers can improve LBO algorithms. 展开更多
关键词 End-to-end approaches learning-based optimization(LBO)algorithms reinforcement learning step-by-step approaches vehicle routing problem(VRP)
下载PDF
The Application of Problem Based Learning in Undergraduate Nursing Education: A Strategy for Curriculum Reform 被引量:1
17
作者 Tan Kan Ku Michael Ha 《Journal of Biosciences and Medicines》 2016年第6期52-59,共8页
Background: Problem based learning (PBL) is an innovative way of delivering instruction in which problems are used as the basis of learning. Problem based learning was developed in the 1960s by Harold Barrows at McMas... Background: Problem based learning (PBL) is an innovative way of delivering instruction in which problems are used as the basis of learning. Problem based learning was developed in the 1960s by Harold Barrows at McMaster University Medical School in Canada. Since then, PBL had been im-plemented as a teaching method in other reputable education institutions internationally, includ-ing nursing education. Curriculum reform is proposed through PBL in conjunction with patient simulation in undergraduate nursing education. The first author, Tan Kan Ku, PhD Candidate, MHS (Transcultural Mental Health—by Research) worked as a Registered Nurse for more than two decades internationally in England, New Zealand, Saudi Arabia and Australia, where she worked as a Case Manager in Community Mental Health Rehabilitation Program. Since 2001, she focused on nurse education and research into the stigma of mental illness from a cross-cultural perspective. Currently, she teaches Mental Health, Cultural Diversity and Research in the Diploma of Nursing course at Victoria University in Melbourne, Australia, while completing her PhD thesis for examination at Charisma University. The second author, Dr. Michael Ha, FSA, MAAA, CFA, CPA (Australia) FRM, PRM, LLM, is the Founding Director of the MSc Financial Mathematics programme at Xian Jiaotong-Liverpool University. He was previously Vice President of Strategic Business In-itiatives Units at ING Life Insurance in its Taiwan operation. Ninety percent of his students are enrolled in the Financial Mathematics programme. They learn not only mathematics and statistics theories but also their applications in the Finance and Investment areas, especially Portfolio Con-struction and Financial Risk Management. Creating a real-world Finance work environment in university lecture-halls embracing theories and practice, Dr. Ha strongly believes the PBL method can be employed in the Financial Mathematics training agenda so students can be better-prepared for work. Students are no longer instructed-learners but active thinkers and problem-solvers. Conclusion: Educators in fields such as Medical, Nursing, Engineering, Financial Mathematics, Ac-counting, Computing, etc., need to be prepared to change their teaching philosophy from didactic to problem solving for PBL to be implemented. Constructive alignment is recommended for curri-culum reform. 展开更多
关键词 problem based learning Critical Thinking Patient Simulation Nurse Education CONSTRUCTIVISM
下载PDF
Integrating a flipped classroom and problem-based learning into ophthalmology education 被引量:2
18
作者 Jingyi Luo Tao Lin +4 位作者 Nan Wang Yuxian Zou Xing Liu Chengguo Zuo Yimin Zhong 《Eye Science》 CAS 2017年第1期25-32,共8页
Background: Ophthalmology is an important medical science subject, but it is given with insufficient attention in undergraduate medical education. Flipped classroom(FC) and problem-based learning(PBL) are well-known e... Background: Ophthalmology is an important medical science subject, but it is given with insufficient attention in undergraduate medical education. Flipped classroom(FC) and problem-based learning(PBL) are well-known education methods that can be integrated into ophthalmology education to improve students' competence level and promote active learning. Methods: We used a mixed teaching methodology that integrated a FC and PBL into a 1-week ophthalmology clerkship for 72 fourth-year medical students. The course includes two major sessions: FC session and PBL session, relying on clinical and real-patient cases. Written examinations were set up to assess students' academic performance and questionnaires were designed to evaluate their perceptions. Results: The post-course examination results were higher than the pre-course results, and many students gained ophthalmic knowledge and learning skills to varying levels. Comparison of pre-and post-course questionnaires indicated that interests in ophthalmology increased and more students expressed desires to be eye doctors. Most students were satisfied with the new method, while some suggested the process should be slower and the communication with their teacher needed to strengthen.Conclusions: FC and PBL are complementary methodologies. Utilizing the mixed teaching meth of FC and PBL was successful in enhancing academic performance, student satisfactions and promoting active learning. 展开更多
关键词 Flipped classroom(FC) integrated ophthalmology education problem-based learning(FBL) UNDERGRADUATE
下载PDF
Greyscale based learning in BPNN for image restoration problem
19
作者 UMAR Farooq 闫雪梅 +1 位作者 SADIA Murawwat MUHAMMAD Imran 《Journal of Beijing Institute of Technology》 EI CAS 2013年第1期94-100,共7页
A new method of back propagation learning with respect to the problem of image restora- tion which is named as greyscale based learning in back propagation neural networks (BPNN) is in- vestigated. It is observed th... A new method of back propagation learning with respect to the problem of image restora- tion which is named as greyscale based learning in back propagation neural networks (BPNN) is in- vestigated. It is observed that by using this method the value of mean square error (MSE) decreases significantly. In addition, this method also gives good visual results when it is applied in image resto- ration problem. This method is also useful to tackle the inherited drawback of falling into local mini- ma by reducing its effect on overall system by bifurcating the learning locally different for different grey scale values. The performance of this algorithm has been studied in detail with different combi- nations of weights. In short, this algorithm provides much better results especially when compared with the simple back propagation algorithm with any further enhancements and without going for hy- brid solutions. 展开更多
关键词 greyscale based learning back propagation neural network(BPNN) image restoration
下载PDF
An innovative approach of using online problem‑based learning and case‑based learning in teaching disaster nursing during the COVID‑19 pandemic
20
作者 Yin-Ji LIANG Wei-Ju CHEN +4 位作者 Shuang ZHOU Lin WANG Qiu-Ying LIAO Wan-Xian LU Chen-Li LIN 《Journal of Integrative Nursing》 2020年第4期196-202,共7页
Objective:The objective of this study is to evaluate the learning experience effect of online problem‑based learning(PBL)and case‑based learning(CBL)in teaching disaster nursing.Methods:According to the characteristic... Objective:The objective of this study is to evaluate the learning experience effect of online problem‑based learning(PBL)and case‑based learning(CBL)in teaching disaster nursing.Methods:According to the characteristics of online PBL and CBL,the revised curriculum experience questionnaire(CEQ)was used to evaluate the teaching quality.Cronbach’s coefficient and the reliability of the split‑half reliability questionnaire were calculated.The exploratory factor analysis of 26 items was carried out by principal component analysis and maximum variance rotation method.Kaiser‑Meyer‑Olkin(KMO)and Bartlett’s tests were used to test the validity of the questionnaire.The comparison between groups was performed by one‑way analysis of variance.Results:A total of 191 questionnaires were issued and 183 copies were recovered,with a recovery rate of 95.8%.The Cronbach’s alpha coefficient of CEQ is 0.929,and the Cronbach’s alpha coefficient of each dimension is between 0.713 and 0.924.After factor analysis,the KMO value was 0.817.The 26 items finally returned to 6 principal components,and all factor load values were above 0.7,indicating good factor analysis effect.This study found that students who learned disaster nursing had an ideal online learning experience,and the average value of CEQ was 3.74±0.42.In particular,male students,senior students or medical students had a higher curriculum experience score.In addition,compared with the national recruitment,the international students have higher curriculum experience score on the dimension of Appropriate Assessment Scale,indicating that the international students are more inclined to use online PBL and CBL.Conclusions:Using the revised CEQ is an innovative approach to evaluate the effect of online PBL and CBL in teaching disaster nursing,which can improve students’experience and curriculum quality. 展开更多
关键词 Case‑based learning curriculum experience NURSING problembased learning SATISFACTION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部