Objective: Given the unique cultural background, way of life, and physical environment of the Tibetan Plateau, this study aims to investigate the effects of health education using problem-based learning (PBL) approach...Objective: Given the unique cultural background, way of life, and physical environment of the Tibetan Plateau, this study aims to investigate the effects of health education using problem-based learning (PBL) approaches on the knowledge, attitude, practice, and coping skills of women with high-risk pregnancies in this region. Methods: 76 high-risk pregnancy cases were enrolled at Tibet’s Linzhi People’s Hospital between September 2023 and April 2024. 30 patients admitted between September 2023 and December 2023 were selected as the control group and were performed with regular patient education. 46 patients admitted between January 2024 and April 2024 were selected as the observation group and were performed regular patient education with problem-based learning approaches. Two groups’ performance on their health knowledge, attitude, practice and coping skills before and after interventions were evaluated, and patient satisfaction were measured at the end of the study. Results: There was no statistical significance (P P P Conclusions: Health education with problem-based learning approaches is worth promoting as it can help high-risk pregnant women in plateau areas develop better health knowledge, attitude and practice and healthier coping skills. Also, it can improve patient sanctification.展开更多
The Veterinary Microbiology course is centered around the diagnosis and testing of pathogenic microorganisms,with the core value of“moral education and character development.”It reconstructs multidimensional teachin...The Veterinary Microbiology course is centered around the diagnosis and testing of pathogenic microorganisms,with the core value of“moral education and character development.”It reconstructs multidimensional teaching resources by integrating disciplinary achievements with clinical cases and implements a hybrid teaching approach combining virtual simulation and problem-based learning(PBL)through the“three stages+four models+three reflections”framework.Dual-qualification teachers employ various teaching methods,create a“six-in-one”model for ideological and political education,and conduct formative assessments based on the principles of diversified objectives and process emphasis.The hybrid teaching reform addresses issues such as fragmented knowledge,insufficient class hours,weak animal disease diagnostic abilities among students,limited application and expansion of knowledge points,and students’lack of proactive critical thinking skills.The application of hybrid teaching has shown significant advantages and effectiveness,providing a reference for teaching reform in similar microbiology courses.展开更多
Objective:To analyze the effect of using a problem-based(PBL)independent learning model in teaching cerebral ischemic stroke(CIS)first aid in emergency medicine.Methods:90 interns in the emergency department of our ho...Objective:To analyze the effect of using a problem-based(PBL)independent learning model in teaching cerebral ischemic stroke(CIS)first aid in emergency medicine.Methods:90 interns in the emergency department of our hospital from May 2022 to May 2023 were selected for the study.They were divided into Group A(45,conventional teaching method)and Group B(45 cases,PBL independent learning model)by randomized numerical table method to compare the effects of the two groups.Results:The teaching effect indicators and student satisfaction scores in Group B were higher than those in Group A(P<0.05).Conclusion:The use of the PBL independent learning model in the teaching of CIS first aid can significantly improve the teaching effect and student satisfaction.展开更多
Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese M...Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese Medicine. Methods: The study used the experimental control method. The study lasted from September to November 2022. The subjects of this study were 49 students of standardized training for resident doctors of traditional Chinese Medicine from grades 2020, 2021 and 2022 of Dazhou integrated TCM & Western Medicine Hospital. They were randomly divided into experiment group (25) and control group (24). The experiment group adopted flipped classroom combined with problem-based learning teaching method, and the control group adopted traditional teaching method. The teaching content was 4 basic clinical skill projects, including four diagnoses of traditional Chinese Medicine, cardiopulmonary resuscitation, dressing change procedure, acupuncture and massage. The evaluation method was carried out by comparing the students’ performance and a self-designed questionnaire was used to investigate the students’ evaluation of the teaching method. Results: The test scores of total scores in the experimental group (90.12 ± 5.89) were all higher than those in the control group (81.47 ± 7.96) (t = 4.53, P P Conclusions: The teaching process of the flipped classroom combined with problem-based learning teaching method is conducive to improving the efficiency of classroom teaching, cultivating students’ self-learning ability, and enhancing students’ willingness to learn.展开更多
Mathematical modeling course has been one of the fast development courses in China since 1992,which mainly trains students’innovation ability.However,the teaching of mathematical modeling course is quite difficult si...Mathematical modeling course has been one of the fast development courses in China since 1992,which mainly trains students’innovation ability.However,the teaching of mathematical modeling course is quite difficult since it requires students to have a strong mathematical foundation,good ability to design algorithms,and programming skills.Besides,limited class hours and lack of interest in learning are the other reasons.To address these problems,according to the outcome-based education,we adopt the problem-based learning combined with a seminar mode in teaching.We customize cases related to computer and software engineering,start from simple problems in daily life,step by step deepen the difficulty,and finally refer to the professional application in computer and software engineering.Also,we focus on ability training rather than mathematical theory or programming language learning.Initially,we prepare the problem,related mathematic theory,and core code for students.Furtherly,we train them how to find the problem,and how to search the related mathematic theory and software tools by references for modeling and analysis.Moreover,we solve the problem of limited class hours by constructing an online resource learning library.After a semester of practical teaching,it has been shown that the interest and learning effectiveness of students have been increased and our reform plan has achieved good results.展开更多
This thesis took students from Grade one of Xuancheng No.3 Middle High School as the research objects,mainly employing the classroom observation,the questionnaire,and test to investigate the effect of problem-based le...This thesis took students from Grade one of Xuancheng No.3 Middle High School as the research objects,mainly employing the classroom observation,the questionnaire,and test to investigate the effect of problem-based learning method in English grammar teaching.The findings are as follows:(a)the scores of students in the experimental class obviously improved;and(b)compared with the traditional teaching method,the application of problem-based learning method in grammar teaching can stimulate students’interest in learning.To sum up,this method can improve students’English competence and learning interest significantly,which suggests it can be applied in grammar teaching.展开更多
This paper combines the cultivation of innovation ability with the content of problem-based learning(PBL),analyzes the current situation of the traditional dress design course,discusses the problems existing in the cu...This paper combines the cultivation of innovation ability with the content of problem-based learning(PBL),analyzes the current situation of the traditional dress design course,discusses the problems existing in the cultivation of innovation ability of college and university traditional dress design,and searches for the strategies to improve students’innovation ability based on PBL.This paper argues that PBL can provide assistance to the teaching design of traditional dress design courses,which is conducive to improving students’innovation ability in traditional dress design and realizing the desired teaching effect.展开更多
Objective:To explore the application effect of microteaching combined with problem-based learning(PBL)teaching mode in teaching clinical nursing interns in otorhinolaryngology department.Methods:A total of 72 nursing ...Objective:To explore the application effect of microteaching combined with problem-based learning(PBL)teaching mode in teaching clinical nursing interns in otorhinolaryngology department.Methods:A total of 72 nursing students who interned in our hospital from June 2022 to February 2023 were selected,and all of them were comprehensively trained in basic theoretical knowledge as well as practical skills before the beginning of their learning tasks.The students were randomly divided into the control group and the experimental group,with 36 students in each group.The control group was taught using the traditional clinical nursing teaching mode,and the experimental group was taught using microteaching combined with the PBL teaching mode,subsequently comparing the differences between the two groups of interns in the degree of mastery of theoretical knowledge,hands-on skills,teamwork ability,patient satisfaction,and other aspects.Results:In terms of mastery of theoretical knowledge,the interns in the experimental group(97.22%)were significantly better than that of the control group(75.00%)(P<0.05);the interns in the experimental group had significantly better practical skills(77.78%)than that of the control group(55.56%)(P<0.05);the interns in the experimental group had significantly better teamwork ability than the control group(P<0.05);through the questionnaire survey,it was found that students’satisfaction with teaching in the experimental group(97.22%)was also significantly higher than that in the control group(75.00%)(P<0.05).Conclusion:The application of microteaching combined with PBL teaching mode in the teaching of clinical nursing interns in otorhinolaryngology department achieved significant results.It can not only improve the professional knowledge and application ability of nursing students,but also cultivate their independent thinking,problem-solving skill,as well as teamwork ability.It can also improve the teaching quality and patient satisfaction,and contribute positively to the development of medical education.展开更多
Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning technique...Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning techniques have emerged as promising tools in stroke medicine,enabling efficient analysis of large-scale datasets and facilitating personalized and precision medicine approaches.This abstract provides a comprehensive overview of machine learning’s applications,challenges,and future directions in stroke medicine.Recently introduced machine learning algorithms have been extensively employed in all the fields of stroke medicine.Machine learning models have demonstrated remarkable accuracy in imaging analysis,diagnosing stroke subtypes,risk stratifications,guiding medical treatment,and predicting patient prognosis.Despite the tremendous potential of machine learning in stroke medicine,several challenges must be addressed.These include the need for standardized and interoperable data collection,robust model validation and generalization,and the ethical considerations surrounding privacy and bias.In addition,integrating machine learning models into clinical workflows and establishing regulatory frameworks are critical for ensuring their widespread adoption and impact in routine stroke care.Machine learning promises to revolutionize stroke medicine by enabling precise diagnosis,tailored treatment selection,and improved prognostication.Continued research and collaboration among clinicians,researchers,and technologists are essential for overcoming challenges and realizing the full potential of machine learning in stroke care,ultimately leading to enhanced patient outcomes and quality of life.This review aims to summarize all the current implications of machine learning in stroke diagnosis,treatment,and prognostic evaluation.At the same time,another purpose of this paper is to explore all the future perspectives these techniques can provide in combating this disabling disease.展开更多
针对大规模无人机自组网面临的任务需求多样性、电磁环境复杂性、节点高机动性等问题,充分考虑无人机节点高速移动的特点,基于无人机拓扑稳定度和链路通信容量指标设计了一种无人机多点中继(multi-point relay,MPR)选择方法;为了减少网...针对大规模无人机自组网面临的任务需求多样性、电磁环境复杂性、节点高机动性等问题,充分考虑无人机节点高速移动的特点,基于无人机拓扑稳定度和链路通信容量指标设计了一种无人机多点中继(multi-point relay,MPR)选择方法;为了减少网络路由更新时间,增加无人机自组网路由策略的稳定性和可靠性,提出了一种基于Q-learning的自适应链路状态路由协议(Q-learning based adaptive link state routing,QALSR)。仿真结果表明,所提算法性能指标优于现有的主动路由协议。展开更多
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr...BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.展开更多
Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead...Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations.展开更多
In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,ma...In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications.展开更多
Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experi...Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems.展开更多
High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency...High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV.展开更多
文摘Objective: Given the unique cultural background, way of life, and physical environment of the Tibetan Plateau, this study aims to investigate the effects of health education using problem-based learning (PBL) approaches on the knowledge, attitude, practice, and coping skills of women with high-risk pregnancies in this region. Methods: 76 high-risk pregnancy cases were enrolled at Tibet’s Linzhi People’s Hospital between September 2023 and April 2024. 30 patients admitted between September 2023 and December 2023 were selected as the control group and were performed with regular patient education. 46 patients admitted between January 2024 and April 2024 were selected as the observation group and were performed regular patient education with problem-based learning approaches. Two groups’ performance on their health knowledge, attitude, practice and coping skills before and after interventions were evaluated, and patient satisfaction were measured at the end of the study. Results: There was no statistical significance (P P P Conclusions: Health education with problem-based learning approaches is worth promoting as it can help high-risk pregnant women in plateau areas develop better health knowledge, attitude and practice and healthier coping skills. Also, it can improve patient sanctification.
基金Education Research and Reform Project of the Online Open Course Alliance in the Guangdong-Hong Kong-Macao Greater Bay Area in 2023(WGKM2023158)Research Topic of the Online Open Curriculum Steering Committee of Guangdong Province in 2022(2022ZXKC462)+3 种基金Foshan Philosophy and Social Science Planning Project in 2024(2024-GJ037)Innovation Project of Guangdong Graduate Education(2022JGXM129,2022JGXM128,2023ANLK-080)Demonstration Project of Ideological and Political Reform of Guangdong Education Department(Guangdong Higher Education Letter[2021]No.21)Guangdong Provincial Department of Education,Provincial First-Class Undergraduate Courses(Guangdong Higher Education Letter[2023]No.33)。
文摘The Veterinary Microbiology course is centered around the diagnosis and testing of pathogenic microorganisms,with the core value of“moral education and character development.”It reconstructs multidimensional teaching resources by integrating disciplinary achievements with clinical cases and implements a hybrid teaching approach combining virtual simulation and problem-based learning(PBL)through the“three stages+four models+three reflections”framework.Dual-qualification teachers employ various teaching methods,create a“six-in-one”model for ideological and political education,and conduct formative assessments based on the principles of diversified objectives and process emphasis.The hybrid teaching reform addresses issues such as fragmented knowledge,insufficient class hours,weak animal disease diagnostic abilities among students,limited application and expansion of knowledge points,and students’lack of proactive critical thinking skills.The application of hybrid teaching has shown significant advantages and effectiveness,providing a reference for teaching reform in similar microbiology courses.
文摘Objective:To analyze the effect of using a problem-based(PBL)independent learning model in teaching cerebral ischemic stroke(CIS)first aid in emergency medicine.Methods:90 interns in the emergency department of our hospital from May 2022 to May 2023 were selected for the study.They were divided into Group A(45,conventional teaching method)and Group B(45 cases,PBL independent learning model)by randomized numerical table method to compare the effects of the two groups.Results:The teaching effect indicators and student satisfaction scores in Group B were higher than those in Group A(P<0.05).Conclusion:The use of the PBL independent learning model in the teaching of CIS first aid can significantly improve the teaching effect and student satisfaction.
文摘Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese Medicine. Methods: The study used the experimental control method. The study lasted from September to November 2022. The subjects of this study were 49 students of standardized training for resident doctors of traditional Chinese Medicine from grades 2020, 2021 and 2022 of Dazhou integrated TCM & Western Medicine Hospital. They were randomly divided into experiment group (25) and control group (24). The experiment group adopted flipped classroom combined with problem-based learning teaching method, and the control group adopted traditional teaching method. The teaching content was 4 basic clinical skill projects, including four diagnoses of traditional Chinese Medicine, cardiopulmonary resuscitation, dressing change procedure, acupuncture and massage. The evaluation method was carried out by comparing the students’ performance and a self-designed questionnaire was used to investigate the students’ evaluation of the teaching method. Results: The test scores of total scores in the experimental group (90.12 ± 5.89) were all higher than those in the control group (81.47 ± 7.96) (t = 4.53, P P Conclusions: The teaching process of the flipped classroom combined with problem-based learning teaching method is conducive to improving the efficiency of classroom teaching, cultivating students’ self-learning ability, and enhancing students’ willingness to learn.
基金supported in part by the 2023 Schoollevel Education and Teaching Reform Project of Guangdong Ocean University。
文摘Mathematical modeling course has been one of the fast development courses in China since 1992,which mainly trains students’innovation ability.However,the teaching of mathematical modeling course is quite difficult since it requires students to have a strong mathematical foundation,good ability to design algorithms,and programming skills.Besides,limited class hours and lack of interest in learning are the other reasons.To address these problems,according to the outcome-based education,we adopt the problem-based learning combined with a seminar mode in teaching.We customize cases related to computer and software engineering,start from simple problems in daily life,step by step deepen the difficulty,and finally refer to the professional application in computer and software engineering.Also,we focus on ability training rather than mathematical theory or programming language learning.Initially,we prepare the problem,related mathematic theory,and core code for students.Furtherly,we train them how to find the problem,and how to search the related mathematic theory and software tools by references for modeling and analysis.Moreover,we solve the problem of limited class hours by constructing an online resource learning library.After a semester of practical teaching,it has been shown that the interest and learning effectiveness of students have been increased and our reform plan has achieved good results.
文摘This thesis took students from Grade one of Xuancheng No.3 Middle High School as the research objects,mainly employing the classroom observation,the questionnaire,and test to investigate the effect of problem-based learning method in English grammar teaching.The findings are as follows:(a)the scores of students in the experimental class obviously improved;and(b)compared with the traditional teaching method,the application of problem-based learning method in grammar teaching can stimulate students’interest in learning.To sum up,this method can improve students’English competence and learning interest significantly,which suggests it can be applied in grammar teaching.
文摘This paper combines the cultivation of innovation ability with the content of problem-based learning(PBL),analyzes the current situation of the traditional dress design course,discusses the problems existing in the cultivation of innovation ability of college and university traditional dress design,and searches for the strategies to improve students’innovation ability based on PBL.This paper argues that PBL can provide assistance to the teaching design of traditional dress design courses,which is conducive to improving students’innovation ability in traditional dress design and realizing the desired teaching effect.
文摘Objective:To explore the application effect of microteaching combined with problem-based learning(PBL)teaching mode in teaching clinical nursing interns in otorhinolaryngology department.Methods:A total of 72 nursing students who interned in our hospital from June 2022 to February 2023 were selected,and all of them were comprehensively trained in basic theoretical knowledge as well as practical skills before the beginning of their learning tasks.The students were randomly divided into the control group and the experimental group,with 36 students in each group.The control group was taught using the traditional clinical nursing teaching mode,and the experimental group was taught using microteaching combined with the PBL teaching mode,subsequently comparing the differences between the two groups of interns in the degree of mastery of theoretical knowledge,hands-on skills,teamwork ability,patient satisfaction,and other aspects.Results:In terms of mastery of theoretical knowledge,the interns in the experimental group(97.22%)were significantly better than that of the control group(75.00%)(P<0.05);the interns in the experimental group had significantly better practical skills(77.78%)than that of the control group(55.56%)(P<0.05);the interns in the experimental group had significantly better teamwork ability than the control group(P<0.05);through the questionnaire survey,it was found that students’satisfaction with teaching in the experimental group(97.22%)was also significantly higher than that in the control group(75.00%)(P<0.05).Conclusion:The application of microteaching combined with PBL teaching mode in the teaching of clinical nursing interns in otorhinolaryngology department achieved significant results.It can not only improve the professional knowledge and application ability of nursing students,but also cultivate their independent thinking,problem-solving skill,as well as teamwork ability.It can also improve the teaching quality and patient satisfaction,and contribute positively to the development of medical education.
文摘Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning techniques have emerged as promising tools in stroke medicine,enabling efficient analysis of large-scale datasets and facilitating personalized and precision medicine approaches.This abstract provides a comprehensive overview of machine learning’s applications,challenges,and future directions in stroke medicine.Recently introduced machine learning algorithms have been extensively employed in all the fields of stroke medicine.Machine learning models have demonstrated remarkable accuracy in imaging analysis,diagnosing stroke subtypes,risk stratifications,guiding medical treatment,and predicting patient prognosis.Despite the tremendous potential of machine learning in stroke medicine,several challenges must be addressed.These include the need for standardized and interoperable data collection,robust model validation and generalization,and the ethical considerations surrounding privacy and bias.In addition,integrating machine learning models into clinical workflows and establishing regulatory frameworks are critical for ensuring their widespread adoption and impact in routine stroke care.Machine learning promises to revolutionize stroke medicine by enabling precise diagnosis,tailored treatment selection,and improved prognostication.Continued research and collaboration among clinicians,researchers,and technologists are essential for overcoming challenges and realizing the full potential of machine learning in stroke care,ultimately leading to enhanced patient outcomes and quality of life.This review aims to summarize all the current implications of machine learning in stroke diagnosis,treatment,and prognostic evaluation.At the same time,another purpose of this paper is to explore all the future perspectives these techniques can provide in combating this disabling disease.
文摘针对大规模无人机自组网面临的任务需求多样性、电磁环境复杂性、节点高机动性等问题,充分考虑无人机节点高速移动的特点,基于无人机拓扑稳定度和链路通信容量指标设计了一种无人机多点中继(multi-point relay,MPR)选择方法;为了减少网络路由更新时间,增加无人机自组网路由策略的稳定性和可靠性,提出了一种基于Q-learning的自适应链路状态路由协议(Q-learning based adaptive link state routing,QALSR)。仿真结果表明,所提算法性能指标优于现有的主动路由协议。
基金Supported by Science and Technology Support Program of Qiandongnan Prefecture,No.Qiandongnan Sci-Tech Support[2021]12Guizhou Province High-Level Innovative Talent Training Program,No.Qiannan Thousand Talents[2022]201701.
文摘BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant 62071179.
文摘Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations.
基金supported by the National Natural Science Foundation of China(Grant Nos.41976193 and 42176243).
文摘In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0701202,No.2017YFB0701500 and No.2020YFB1505901)National Natural Science Foundation of China(General Program No.51474149,52072240)+3 种基金Shanghai Science and Technology Committee(No.18511109300)Science and Technology Commission of the CMC(2019JCJQZD27300)financial support from the University of Michigan and Shanghai Jiao Tong University joint funding,China(AE604401)Science and Technology Commission of Shanghai Municipality(No.18511109302).
文摘Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems.
基金supported in part by the National Natural Science Foundation of China(62371116 and 62231020)in part by the Science and Technology Project of Hebei Province Education Department(ZD2022164)+2 种基金in part by the Fundamental Research Funds for the Central Universities(N2223031)in part by the Open Research Project of Xidian University(ISN24-08)Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology,China,CRKL210203)。
文摘High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV.