期刊文献+
共找到15,988篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of the Role of Problem-Based Independent Learning Model in Teaching Cerebral Ischemic Stroke First Aid in Emergency Medicine
1
作者 Hua Liu 《Journal of Contemporary Educational Research》 2024年第6期16-21,共6页
Objective:To analyze the effect of using a problem-based(PBL)independent learning model in teaching cerebral ischemic stroke(CIS)first aid in emergency medicine.Methods:90 interns in the emergency department of our ho... Objective:To analyze the effect of using a problem-based(PBL)independent learning model in teaching cerebral ischemic stroke(CIS)first aid in emergency medicine.Methods:90 interns in the emergency department of our hospital from May 2022 to May 2023 were selected for the study.They were divided into Group A(45,conventional teaching method)and Group B(45 cases,PBL independent learning model)by randomized numerical table method to compare the effects of the two groups.Results:The teaching effect indicators and student satisfaction scores in Group B were higher than those in Group A(P<0.05).Conclusion:The use of the PBL independent learning model in the teaching of CIS first aid can significantly improve the teaching effect and student satisfaction. 展开更多
关键词 problem-based independent learning model Emergency medicine Ischemic stroke First aid teaching SATISFACTION
下载PDF
The Application of“Problem-Based Learning+Flipped Classroom”Teaching Model in Bilingual Education
2
作者 Xuan Zhang Songlin Wang 《Journal of Contemporary Educational Research》 2024年第11期215-221,共7页
This study focuses on the application of the“PBL(problem-based learning)+Flipped Classroom”teaching model in bilingual education,aiming to explore its potential to enhance the quality and effectiveness of bilingual ... This study focuses on the application of the“PBL(problem-based learning)+Flipped Classroom”teaching model in bilingual education,aiming to explore its potential to enhance the quality and effectiveness of bilingual teaching.PBL emphasizes learning through the resolution of real-world problems,while the Flipped Classroom advocates that students acquire basic knowledge through self-study before class,dedicating class time to in-depth discussions and practical activities.The integration of these two teaching models in bilingual education aims to stimulate students’interest in learning,improve their autonomous learning abilities,enhance critical thinking,and foster cross-cultural communication skills.Through literature review,case analysis,and empirical research,this study first examines the current applications and challenges of PBL and the Flipped Classroom in bilingual education.Subsequently,it elaborates on the specific implementation steps of the“PBL+Flipped Classroom”teaching model in bilingual education,including problem design,preview material provision,cooperative learning,classroom activities,and language support.A comparative experiment is then conducted to analyze the impact of this teaching model on students’learning motivation,academic performance,and cross-cultural communication skills.The results indicate that the“PBL+Flipped Classroom”teaching model significantly improves students’learning motivation and participation,enhances academic performance,and effectively boosts their cross-cultural communication skills.Furthermore,this model aids in cultivating students’autonomous learning abilities and critical thinking,providing an innovative and effective approach to bilingual education.This study offers new ideas and insights for the field of bilingual education,which is of great significance for promoting the innovation and development of bilingual teaching models. 展开更多
关键词 problem-based learning Flipped classroom Bilingual education learning motivation Academic performance Cross-cultural communication skills
下载PDF
Effects of Health Education with Problem-Based Learning Approaches on the Knowledge, Attitude, Practice and Coping Skills of Women with High-Risk Pregnancies in Plateau Areas
3
作者 Ying Wu Suolang Sezhen +5 位作者 Renqing Yuzhen Hong Wei Zhijuan Zhan Baima Hongying Yuhong Zhang Lihong Liu 《Open Journal of Nursing》 2024年第5期192-199,共8页
Objective: Given the unique cultural background, way of life, and physical environment of the Tibetan Plateau, this study aims to investigate the effects of health education using problem-based learning (PBL) approach... Objective: Given the unique cultural background, way of life, and physical environment of the Tibetan Plateau, this study aims to investigate the effects of health education using problem-based learning (PBL) approaches on the knowledge, attitude, practice, and coping skills of women with high-risk pregnancies in this region. Methods: 76 high-risk pregnancy cases were enrolled at Tibet’s Linzhi People’s Hospital between September 2023 and April 2024. 30 patients admitted between September 2023 and December 2023 were selected as the control group and were performed with regular patient education. 46 patients admitted between January 2024 and April 2024 were selected as the observation group and were performed regular patient education with problem-based learning approaches. Two groups’ performance on their health knowledge, attitude, practice and coping skills before and after interventions were evaluated, and patient satisfaction were measured at the end of the study. Results: There was no statistical significance (P P P Conclusions: Health education with problem-based learning approaches is worth promoting as it can help high-risk pregnant women in plateau areas develop better health knowledge, attitude and practice and healthier coping skills. Also, it can improve patient sanctification. 展开更多
关键词 Plateau Areas Patients with High-Risk Pregnancies problem-based learning Health Education Health Knowledge Attitude and Practice Coping Skills
下载PDF
Hybrid Teaching Reform of Veterinary Microbiology Based on the Combination of Virtual Simulation and Problem-Based Learning
4
作者 Jiedan Liao 《Journal of Contemporary Educational Research》 2024年第9期1-9,共9页
The Veterinary Microbiology course is centered around the diagnosis and testing of pathogenic microorganisms,with the core value of“moral education and character development.”It reconstructs multidimensional teachin... The Veterinary Microbiology course is centered around the diagnosis and testing of pathogenic microorganisms,with the core value of“moral education and character development.”It reconstructs multidimensional teaching resources by integrating disciplinary achievements with clinical cases and implements a hybrid teaching approach combining virtual simulation and problem-based learning(PBL)through the“three stages+four models+three reflections”framework.Dual-qualification teachers employ various teaching methods,create a“six-in-one”model for ideological and political education,and conduct formative assessments based on the principles of diversified objectives and process emphasis.The hybrid teaching reform addresses issues such as fragmented knowledge,insufficient class hours,weak animal disease diagnostic abilities among students,limited application and expansion of knowledge points,and students’lack of proactive critical thinking skills.The application of hybrid teaching has shown significant advantages and effectiveness,providing a reference for teaching reform in similar microbiology courses. 展开更多
关键词 Veterinary Microbiology Hybrid teaching Virtual simulation problem-based learning Teaching reform
下载PDF
Problem-based Learning Combining Seminar Teaching Method for the Practice of Mathematical Modeling Course's Teaching Reform for Computer Discipline
5
作者 Siwei Zhou Zhao Li 《计算机教育》 2023年第12期55-62,共8页
Mathematical modeling course has been one of the fast development courses in China since 1992,which mainly trains students’innovation ability.However,the teaching of mathematical modeling course is quite difficult si... Mathematical modeling course has been one of the fast development courses in China since 1992,which mainly trains students’innovation ability.However,the teaching of mathematical modeling course is quite difficult since it requires students to have a strong mathematical foundation,good ability to design algorithms,and programming skills.Besides,limited class hours and lack of interest in learning are the other reasons.To address these problems,according to the outcome-based education,we adopt the problem-based learning combined with a seminar mode in teaching.We customize cases related to computer and software engineering,start from simple problems in daily life,step by step deepen the difficulty,and finally refer to the professional application in computer and software engineering.Also,we focus on ability training rather than mathematical theory or programming language learning.Initially,we prepare the problem,related mathematic theory,and core code for students.Furtherly,we train them how to find the problem,and how to search the related mathematic theory and software tools by references for modeling and analysis.Moreover,we solve the problem of limited class hours by constructing an online resource learning library.After a semester of practical teaching,it has been shown that the interest and learning effectiveness of students have been increased and our reform plan has achieved good results. 展开更多
关键词 Mathematical modeling problem-based learning Teaching reform Computer education
下载PDF
Application of Microteaching Combined with Problem-Based Learning(PBL)Teaching Model in Teaching Clinical Nursing Interns in Otorhinolaryngology Department
6
作者 Xiaorong Yang Juan Yao +1 位作者 Tingting Jiang Ruiqi Li 《Journal of Contemporary Educational Research》 2023年第11期147-153,共7页
Objective:To explore the application effect of microteaching combined with problem-based learning(PBL)teaching mode in teaching clinical nursing interns in otorhinolaryngology department.Methods:A total of 72 nursing ... Objective:To explore the application effect of microteaching combined with problem-based learning(PBL)teaching mode in teaching clinical nursing interns in otorhinolaryngology department.Methods:A total of 72 nursing students who interned in our hospital from June 2022 to February 2023 were selected,and all of them were comprehensively trained in basic theoretical knowledge as well as practical skills before the beginning of their learning tasks.The students were randomly divided into the control group and the experimental group,with 36 students in each group.The control group was taught using the traditional clinical nursing teaching mode,and the experimental group was taught using microteaching combined with the PBL teaching mode,subsequently comparing the differences between the two groups of interns in the degree of mastery of theoretical knowledge,hands-on skills,teamwork ability,patient satisfaction,and other aspects.Results:In terms of mastery of theoretical knowledge,the interns in the experimental group(97.22%)were significantly better than that of the control group(75.00%)(P<0.05);the interns in the experimental group had significantly better practical skills(77.78%)than that of the control group(55.56%)(P<0.05);the interns in the experimental group had significantly better teamwork ability than the control group(P<0.05);through the questionnaire survey,it was found that students’satisfaction with teaching in the experimental group(97.22%)was also significantly higher than that in the control group(75.00%)(P<0.05).Conclusion:The application of microteaching combined with PBL teaching mode in the teaching of clinical nursing interns in otorhinolaryngology department achieved significant results.It can not only improve the professional knowledge and application ability of nursing students,but also cultivate their independent thinking,problem-solving skill,as well as teamwork ability.It can also improve the teaching quality and patient satisfaction,and contribute positively to the development of medical education. 展开更多
关键词 Microlearning problem-based learning(PBL) Nursing trainee mentoring
下载PDF
Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models 被引量:1
7
作者 Lu LI Yongjiu DAI +5 位作者 Zhongwang WEI Wei SHANGGUAN Nan WEI Yonggen ZHANG Qingliang LI Xian-Xiang LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1326-1341,共16页
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient... Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions. 展开更多
关键词 soil moisture forecasting hybrid model deep learning ConvLSTM attention mechanism
下载PDF
Federated Learning Model for Auto Insurance Rate Setting Based on Tweedie Distribution 被引量:1
8
作者 Tao Yin Changgen Peng +2 位作者 Weijie Tan Dequan Xu Hanlin Tang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期827-843,共17页
In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining ... In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining the Tweedie regression model involves training on a centralized dataset,when the data is provided by multiple parties,training a privacy-preserving Tweedie regression model without exchanging raw data becomes a challenge.To address this issue,this study introduces a novel vertical federated learning-based Tweedie regression algorithm for multi-party auto insurance rate setting in data silos.The algorithm can keep sensitive data locally and uses privacy-preserving techniques to achieve intersection operations between the two parties holding the data.After determining which entities are shared,the participants train the model locally using the shared entity data to obtain the local generalized linear model intermediate parameters.The homomorphic encryption algorithms are introduced to interact with and update the model intermediate parameters to collaboratively complete the joint training of the car insurance rate-setting model.Performance tests on two publicly available datasets show that the proposed federated Tweedie regression algorithm can effectively generate Tweedie regression models that leverage the value of data fromboth partieswithout exchanging data.The assessment results of the scheme approach those of the Tweedie regressionmodel learned fromcentralized data,and outperformthe Tweedie regressionmodel learned independently by a single party. 展开更多
关键词 Rate setting Tweedie distribution generalized linear models federated learning homomorphic encryption
下载PDF
Use of machine learning models for the prognostication of liver transplantation: A systematic review 被引量:2
9
作者 Gidion Chongo Jonathan Soldera 《World Journal of Transplantation》 2024年第1期164-188,共25页
BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are p... BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are pivotal in identifying the most suitable transplant candidates.Traditionally,scoring systems like the model for end-stage liver disease have been instrumental in this process.Nevertheless,the landscape of prognostication is undergoing a transformation with the integration of machine learning(ML)and artificial intelligence models.AIM To assess the utility of ML models in prognostication for LT,comparing their performance and reliability to established traditional scoring systems.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines,we conducted a thorough and standardized literature search using the PubMed/MEDLINE database.Our search imposed no restrictions on publication year,age,or gender.Exclusion criteria encompassed non-English studies,review articles,case reports,conference papers,studies with missing data,or those exhibiting evident methodological flaws.RESULTS Our search yielded a total of 64 articles,with 23 meeting the inclusion criteria.Among the selected studies,60.8%originated from the United States and China combined.Only one pediatric study met the criteria.Notably,91%of the studies were published within the past five years.ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values(ranging from 0.6 to 1)across all studies,surpassing the performance of traditional scoring systems.Random forest exhibited superior predictive capabilities for 90-d mortality following LT,sepsis,and acute kidney injury(AKI).In contrast,gradient boosting excelled in predicting the risk of graft-versus-host disease,pneumonia,and AKI.CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT,marking a significant evolution in the field of prognostication. 展开更多
关键词 Liver transplantation Machine learning models PROGNOSTICATION Allograft allocation Artificial intelligence
下载PDF
Effectiveness of hybrid ensemble machine learning models for landslide susceptibility analysis:Evidence from Shimla district of North-west Indian Himalayan region
10
作者 SHARMA Aastha SAJJAD Haroon +2 位作者 RAHAMAN Md Hibjur SAHA Tamal Kanti BHUYAN Nirsobha 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2368-2393,共26页
The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper ... The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics. 展开更多
关键词 Landslide susceptibility Site-specific factors Machine learning models Hybrid ensemble learning Geospatial techniques Himalayan region
下载PDF
Model Agnostic Meta-Learning(MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks
11
作者 Yasir Maqsood Syed Muhammad Usman +3 位作者 Musaed Alhussein Khursheed Aurangzeb Shehzad Khalid Muhammad Zubair 《Computers, Materials & Continua》 SCIE EI 2024年第5期2795-2811,共17页
Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly di... Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed. 展开更多
关键词 Wheat disease detection deep learning vision transformer graph neural network model agnostic meta learning
下载PDF
Cybernet Model:A New Deep Learning Model for Cyber DDoS Attacks Detection and Recognition
12
作者 Azar Abid Salih Maiwan Bahjat Abdulrazaq 《Computers, Materials & Continua》 SCIE EI 2024年第1期1275-1295,共21页
Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being... Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being one of the most crucial due to their rapid cyberattack detection capabilities on networks and hosts.The capabilities of DL in feature learning and analyzing extensive data volumes lead to the recognition of network traffic patterns.This study presents novel lightweight DL models,known as Cybernet models,for the detection and recognition of various cyber Distributed Denial of Service(DDoS)attacks.These models were constructed to have a reasonable number of learnable parameters,i.e.,less than 225,000,hence the name“lightweight.”This not only helps reduce the number of computations required but also results in faster training and inference times.Additionally,these models were designed to extract features in parallel from 1D Convolutional Neural Networks(CNN)and Long Short-Term Memory(LSTM),which makes them unique compared to earlier existing architectures and results in better performance measures.To validate their robustness and effectiveness,they were tested on the CIC-DDoS2019 dataset,which is an imbalanced and large dataset that contains different types of DDoS attacks.Experimental results revealed that bothmodels yielded promising results,with 99.99% for the detectionmodel and 99.76% for the recognition model in terms of accuracy,precision,recall,and F1 score.Furthermore,they outperformed the existing state-of-the-art models proposed for the same task.Thus,the proposed models can be used in cyber security research domains to successfully identify different types of attacks with a high detection and recognition rate. 展开更多
关键词 Deep learning CNN LSTM Cybernet model DDoS recognition
下载PDF
Advancing automated pupillometry:a practical deep learning model utilizing infrared pupil images
13
作者 Dai Guangzheng Yu Sile +2 位作者 Liu Ziming Yan Hairu He Xingru 《国际眼科杂志》 CAS 2024年第10期1522-1528,共7页
AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hos... AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application. 展开更多
关键词 PUPIL infrared image algorithm deep learning model
下载PDF
Retrospective Analysis of Radiofrequency Ablation in Patients with Small Solitary Hepatocellular Carcinoma:Survival Outcomes and Development of a Machine Learning Prognostic Model
14
作者 Qi-fan HE Yue XIONG +3 位作者 Yi-hui YU Xiang-chao MENG Tian-xu MA Zhong-hua CHEN 《Current Medical Science》 SCIE CAS 2024年第5期1006-1017,共12页
Background and Objective The effectiveness of radiofrequency ablation(RFA)in improving long-term survival outcomes for patients with a solitary hepatocellular carcinoma(HCC)measuring 5 cm or less remains uncertain.Thi... Background and Objective The effectiveness of radiofrequency ablation(RFA)in improving long-term survival outcomes for patients with a solitary hepatocellular carcinoma(HCC)measuring 5 cm or less remains uncertain.This study was designed to elucidate the impact of RFA therapy on the survival outcomes of these patients and to construct a prognostic model for patients following RFA.Methods This study was performed using the Surveillance,Epidemiology,and End Results(SEER)database from 2004 to 2017,focusing on patients diagnosed with a solitary HCC lesion≤5 cm in size.We compared the overall survival(OS)and cancer-specific survival(CSS)rates of these patients with those of patients who received hepatectomy,radiotherapy,or chemotherapy or who were part of a blank control group.To enhance the reliability of our findings,we employed stabilized inverse probability treatment weighting(sIPTW)and stratified analyses.Additionally,we conducted a Cox regression analysis to identify prognostic factors.XGBoost models were developed to predict 1-,3-,and 5-year CSS.The XGBoost models were evaluated via receiver operating characteristic(ROC)curves,calibration plots,decision curve analysis(DCA)curves and so on.Results Regardless of whether the data were unadjusted or adjusted for the use of sIPTWs,the 5-year OS(46.7%)and CSS(58.9%)rates were greater in the RFA group than in the radiotherapy(27.1%/35.8%),chemotherapy(32.9%/43.7%),and blank control(18.6%/30.7%)groups,but these rates were lower than those in the hepatectomy group(69.4%/78.9%).Stratified analysis based on age and cirrhosis status revealed that RFA and hepatectomy yielded similar OS and CSS outcomes for patients with cirrhosis aged over 65 years.Age,race,marital status,grade,cirrhosis status,tumor size,and AFP level were selected to construct the XGBoost models based on the training cohort.The areas under the curve(AUCs)for 1,3,and 5 years in the validation cohort were 0.88,0.81,and 0.79,respectively.Calibration plots further demonstrated the consistency between the predicted and actual values in both the training and validation cohorts.Conclusion RFA can improve the survival of patients diagnosed with a solitary HCC lesion≤5 cm.In certain clinical scenarios,RFA achieves survival outcomes comparable to those of hepatectomy.The XGBoost models developed in this study performed admirably in predicting the CSS of patients with solitary HCC tumors smaller than 5 cm following RFA. 展开更多
关键词 hepatocellular carcinoma radiofrequency ablation machine learning model overall survival cancer-specific survival
下载PDF
Construction and evaluation of a liver cancer risk prediction model based on machine learning
15
作者 Ying-Ying Wang Wan-Xia Yang +3 位作者 Qia-Jun Du Zhen-Hua Liu Ming-Hua Lu Chong-Ge You 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第9期3839-3850,共12页
BACKGROUND Liver cancer is one of the most prevalent malignant tumors worldwide,and its early detection and treatment are crucial for enhancing patient survival rates and quality of life.However,the early symptoms of ... BACKGROUND Liver cancer is one of the most prevalent malignant tumors worldwide,and its early detection and treatment are crucial for enhancing patient survival rates and quality of life.However,the early symptoms of liver cancer are often not obvious,resulting in a late-stage diagnosis in many patients,which significantly reduces the effectiveness of treatment.Developing a highly targeted,widely applicable,and practical risk prediction model for liver cancer is crucial for enhancing the early diagnosis and long-term survival rates among affected individuals.AIM To develop a liver cancer risk prediction model by employing machine learning techniques,and subsequently assess its performance.METHODS In this study,a total of 550 patients were enrolled,with 190 hepatocellular carcinoma(HCC)and 195 cirrhosis patients serving as the training cohort,and 83 HCC and 82 cirrhosis patients forming the validation cohort.Logistic regression(LR),support vector machine(SVM),random forest(RF),and least absolute shrinkage and selection operator(LASSO)regression models were developed in the training cohort.Model performance was assessed in the validation cohort.Additionally,this study conducted a comparative evaluation of the diagnostic efficacy between the ASAP model and the model developed in this study using receiver operating characteristic curve,calibration curve,and decision curve analysis(DCA)to determine the optimal predictive model for assessing liver cancer risk.RESULTS Six variables including age,white blood cell,red blood cell,platelet counts,alpha-fetoprotein and protein induced by vitamin K absence or antagonist II levels were used to develop LR,SVM,RF,and LASSO regression models.The RF model exhibited superior discrimination,and the area under curve of the training and validation sets was 0.969 and 0.858,respectively.These values significantly surpassed those of the LR(0.850 and 0.827),SVM(0.860 and 0.803),LASSO regression(0.845 and 0.831),and ASAP(0.866 and 0.813)models.Furthermore,calibration and DCA indicated that the RF model exhibited robust calibration and clinical validity.CONCLUSION The RF model demonstrated excellent prediction capabilities for HCC and can facilitate early diagnosis of HCC in clinical practice. 展开更多
关键词 Hepatocellular carcinoma CIRRHOSIS Prediction model Machine learning Random forest
下载PDF
A deep learning fusion model for accurate classification of brain tumours in Magnetic Resonance images
16
作者 Nechirvan Asaad Zebari Chira Nadheef Mohammed +8 位作者 Dilovan Asaad Zebari Mazin Abed Mohammed Diyar Qader Zeebaree Haydar Abdulameer Marhoon Karrar Hameed Abdulkareem Seifedine Kadry Wattana Viriyasitavat Jan Nedoma Radek Martinek 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期790-804,共15页
Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods... Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly. 展开更多
关键词 brain tumour deep learning feature fusion model MRI images multi‐classification
下载PDF
Development and validation of a machine learning-based early prediction model for massive intraoperative bleeding in patients with primary hepatic malignancies
17
作者 Jin Li Yu-Ming Jia +4 位作者 Zhi-Lei Zhang Cheng-Yu Liu Zhan-Wu Jiang Zhi-Wei Hao Li Peng 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第1期90-101,共12页
BACKGROUND Surgical resection remains the primary treatment for hepatic malignancies,and intraoperative bleeding is associated with a significantly increased risk of death.Therefore,accurate prediction of intraoperati... BACKGROUND Surgical resection remains the primary treatment for hepatic malignancies,and intraoperative bleeding is associated with a significantly increased risk of death.Therefore,accurate prediction of intraoperative bleeding risk in patients with hepatic malignancies is essential to preventing bleeding in advance and providing safer and more effective treatment.AIM To develop a predictive model for intraoperative bleeding in primary hepatic malignancy patients for improving surgical planning and outcomes.METHODS The retrospective analysis enrolled patients diagnosed with primary hepatic malignancies who underwent surgery at the Hepatobiliary Surgery Department of the Fourth Hospital of Hebei Medical University between 2010 and 2020.Logistic regression analysis was performed to identify potential risk factors for intraoperative bleeding.A prediction model was developed using Python programming language,and its accuracy was evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Among 406 primary liver cancer patients,16.0%(65/406)suffered massive intraoperative bleeding.Logistic regression analysis identified four variables as associated with intraoperative bleeding in these patients:ascites[odds ratio(OR):22.839;P<0.05],history of alcohol consumption(OR:2.950;P<0.015),TNM staging(OR:2.441;P<0.001),and albumin-bilirubin score(OR:2.361;P<0.001).These variables were used to construct the prediction model.The 406 patients were randomly assigned to a training set(70%)and a prediction set(30%).The area under the ROC curve values for the model’s ability to predict intraoperative bleeding were 0.844 in the training set and 0.80 in the prediction set.CONCLUSION The developed and validated model predicts significant intraoperative blood loss in primary hepatic malignancies using four preoperative clinical factors by considering four preoperative clinical factors:ascites,history of alcohol consumption,TNM staging,and albumin-bilirubin score.Consequently,this model holds promise for enhancing individualised surgical planning. 展开更多
关键词 Primary liver cancer Intraoperative bleeding Machine learning model
下载PDF
Autonomous Vehicle Platoons In Urban Road Networks:A Joint Distributed Reinforcement Learning and Model Predictive Control Approach
18
作者 Luigi D’Alfonso Francesco Giannini +3 位作者 Giuseppe Franzè Giuseppe Fedele Francesco Pupo Giancarlo Fortino 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期141-156,共16页
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory... In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors. 展开更多
关键词 Distributed model predictive control distributed reinforcement learning routing decisions urban road networks
下载PDF
Establishing and clinically validating a machine learning model for predicting unplanned reoperation risk in colorectal cancer
19
作者 Li-Qun Cai Da-Qing Yang +2 位作者 Rong-Jian Wang He Huang Yi-Xiong Shi 《World Journal of Gastroenterology》 SCIE CAS 2024年第23期2991-3004,共14页
BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in ... BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in integrating complex clinical data.AIM To develop and validate a machine learning model for predicting unplanned reoperation risk in colorectal cancer patients.METHODS Data of patients treated for colorectal cancer(n=2044)at the First Affiliated Hospital of Wenzhou Medical University and Wenzhou Central Hospital from March 2020 to March 2022 were retrospectively collected.Patients were divided into an experimental group(n=60)and a control group(n=1984)according to unplanned reoperation occurrence.Patients were also divided into a training group and a validation group(7:3 ratio).We used three different machine learning methods to screen characteristic variables.A nomogram was created based on multifactor logistic regression,and the model performance was assessed using receiver operating characteristic curve,calibration curve,Hosmer-Lemeshow test,and decision curve analysis.The risk scores of the two groups were calculated and compared to validate the model.RESULTS More patients in the experimental group were≥60 years old,male,and had a history of hypertension,laparotomy,and hypoproteinemia,compared to the control group.Multiple logistic regression analysis confirmed the following as independent risk factors for unplanned reoperation(P<0.05):Prognostic Nutritional Index value,history of laparotomy,hypertension,or stroke,hypoproteinemia,age,tumor-node-metastasis staging,surgical time,gender,and American Society of Anesthesiologists classification.Receiver operating characteristic curve analysis showed that the model had good discrimination and clinical utility.CONCLUSION This study used a machine learning approach to build a model that accurately predicts the risk of postoperative unplanned reoperation in patients with colorectal cancer,which can improve treatment decisions and prognosis. 展开更多
关键词 Colorectal cancer Postoperative unplanned reoperation Unplanned reoperation Clinical validation NOMOGRAM Machine learning models
下载PDF
Production Capacity Prediction Method of Shale Oil Based on Machine Learning Combination Model
20
作者 Qin Qian Mingjing Lu +3 位作者 Anhai Zhong Feng Yang Wenjun He Min Li 《Energy Engineering》 EI 2024年第8期2167-2190,共24页
The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics,engineering quality,and well conditions.These relationships,nonlinea... The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics,engineering quality,and well conditions.These relationships,nonlinear in nature,pose challenges for accurate description through physical models.While field data provides insights into real-world effects,its limited volume and quality restrict its utility.Complementing this,numerical simulation models offer effective support.To harness the strengths of both data-driven and model-driven approaches,this study established a shale oil production capacity prediction model based on a machine learning combination model.Leveraging fracturing development data from 236 wells in the field,a data-driven method employing the random forest algorithm is implemented to identify the main controlling factors for different types of shale oil reservoirs.Through the combination model integrating support vector machine(SVM)algorithm and back propagation neural network(BPNN),a model-driven shale oil production capacity prediction model is developed,capable of swiftly responding to shale oil development performance under varying geological,fluid,and well conditions.The results of numerical experiments show that the proposed method demonstrates a notable enhancement in R2 by 22.5%and 5.8%compared to singular machine learning models like SVM and BPNN,showcasing its superior precision in predicting shale oil production capacity across diverse datasets. 展开更多
关键词 Shale oil production capacity data-driven model model-driven method machine learning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部