期刊文献+
共找到5,585篇文章
< 1 2 250 >
每页显示 20 50 100
Machine learning for membrane design and discovery 被引量:1
1
作者 Haoyu Yin Muzi Xu +4 位作者 Zhiyao Luo Xiaotian Bi Jiali Li Sui Zhang Xiaonan Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期54-70,共17页
Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research an... Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research and development norm of new materials for energy and environment.This review provides an overview and perspectives on ML methodologies and their applications in membrane design and dis-covery.A brief overview of membrane technologies isfirst provided with the current bottlenecks and potential solutions.Through an appli-cations-based perspective of AI-aided membrane design and discovery,we further show how ML strategies are applied to the membrane discovery cycle(including membrane material design,membrane application,membrane process design,and knowledge extraction),in various membrane systems,ranging from gas,liquid,and fuel cell separation membranes.Furthermore,the best practices of integrating ML methods and specific application targets in membrane design and discovery are presented with an ideal paradigm proposed.The challenges to be addressed and prospects of AI applications in membrane discovery are also highlighted in the end. 展开更多
关键词 Machine learning Membranes AI for Membrane DATA-DRIVEN design
下载PDF
Advancements in machine learning for material design and process optimization in the field of additive manufacturing
2
作者 Hao-ran Zhou Hao Yang +8 位作者 Huai-qian Li Ying-chun Ma Sen Yu Jian shi Jing-chang Cheng Peng Gao Bo Yu Zhi-quan Miao Yan-peng Wei 《China Foundry》 SCIE EI CAS CSCD 2024年第2期101-115,共15页
Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is co... Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing. 展开更多
关键词 additive manufacturing machine learning material design process optimization intersection of disciplines embedded machine learning
下载PDF
Machine learning design of 400 MPa grade biodegradable Zn-Mn based alloys with appropriate corrosion rates
3
作者 Wangzhang Chen Wei Gou +6 位作者 Yageng Li Xiangmin Li Meng Li Jianxin Hou Xiaotong Zhang Zhangzhi Shi Luning Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2727-2736,共10页
The commonly used trial-and-error method of biodegradable Zn alloys is costly and blindness.In this study,based on the self-built database of biodegradable Zn alloys,two machine learning models are established by the ... The commonly used trial-and-error method of biodegradable Zn alloys is costly and blindness.In this study,based on the self-built database of biodegradable Zn alloys,two machine learning models are established by the first time to predict the ultimate tensile strength(UTS)and immersion corrosion rate(CR)of biodegradable Zn alloys.A real-time visualization interface has been established to design Zn-Mn based alloys;a representative alloy is Zn-0.4Mn-0.4Li-0.05Mg.Through tensile mechanical properties and immersion corrosion rate tests,its UTS reaches 420 MPa,and the prediction error is only 0.95%.CR is 73μm/a and the prediction error is 5.5%,which elevates 50 MPa grade of UTS and owns appropriate corrosion rate.Finally,influences of the selected features on UTS and CR are discussed in detail.The combined application of UTS and CR model provides a new strategy for synergistically regulating comprehens-ive properties of biodegradable Zn alloys. 展开更多
关键词 Zn alloys machine learning alloy design performance prediction
下载PDF
Combining reinforcement learning with mathematical programming:An approach for optimal design of heat exchanger networks
4
作者 Hui Tan Xiaodong Hong +4 位作者 Zuwei Liao Jingyuan Sun Yao Yang Jingdai Wang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期63-71,共9页
Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinea... Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinear and combinatorial nature of the HEN problem,it is not easy to find solutions of high quality for large-scale problems.The reinforcement learning(RL)method,which learns strategies through ongoing exploration and exploitation,reveals advantages in such area.However,due to the complexity of the HEN design problem,the RL method for HEN should be dedicated and designed.A hybrid strategy combining RL with mathematical programming is proposed to take better advantage of both methods.An insightful state representation of the HEN structure as well as a customized reward function is introduced.A Q-learning algorithm is applied to update the HEN structure using theε-greedy strategy.Better results are obtained from three literature cases of different scales. 展开更多
关键词 Heat exchanger network Reinforcement learning Mathematical programming Process design
下载PDF
Ab Initio Design of Ni-Rich Cathode Material with Assistance of Machine Learning for High Energy Lithium-Ion Batteries
5
作者 Xinyu Zhang Daobin Mu +6 位作者 Shijie Lu Yuanxing Zhang Yuxiang Zhang Zhuolin Yang Zhikun Zhao Borong Wu Feng Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期74-83,共10页
With the widespread use of lithium-ion batteries in electric vehicles,energy storage,and mobile terminals,there is an urgent need to develop cathode materials with specific properties.However,existing material control... With the widespread use of lithium-ion batteries in electric vehicles,energy storage,and mobile terminals,there is an urgent need to develop cathode materials with specific properties.However,existing material control synthesis routes based on repetitive experiments are often costly and inefficient,which is unsuitable for the broader application of novel materials.The development of machine learning and its combination with materials design offers a potential pathway for optimizing materials.Here,we present a design synthesis paradigm for developing high energy Ni-rich cathodes with thermal/kinetic simulation and propose a coupled image-morphology machine learning model.The paradigm can accurately predict the reaction conditions required for synthesizing cathode precursors with specific morphologies,helping to shorten the experimental duration and costs.After the model-guided design synthesis,cathode materials with different morphological characteristics can be obtained,and the best shows a high discharge capacity of 206 mAh g^(−1)at 0.1C and 83%capacity retention after 200 cycles.This work provides guidance for designing cathode materials for lithium-ion batteries,which may point the way to a fast and cost-effective direction for controlling the morphology of all types of particles. 展开更多
关键词 design digital image lithium-ion batteries machine learning NCM cathode
下载PDF
Application of deep learning for informatics aided design of electrode materials in metal-ion batteries
6
作者 Bin Ma Lisheng Zhang +5 位作者 Wentao Wang Hanqing Yu Xianbin Yang Siyan Chen Huizhi Wang Xinhua Liu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期877-889,共13页
To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In thi... To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In this paper,two deep learning models are developed and trained with two feature groups extracted from the Materials Project datasets to predict the battery electrochemical performances including average voltage,specific capacity and specific energy.The deep learning models are trained with the multilayer perceptron as the core.The Bayesian optimization and Monte Carlo methods are applied to improve the prediction accuracy of models.Based on 10 types of ion batteries,the correlation coefficients are maintained above 0.9 compared to DFT calculation results and the mean absolute error of the prediction results for voltages of two models can reach 0.41 V and 0.20 V,respectively.The electrochemical performance prediction times for the two trained models on thousands of batteries are only 72.9 ms and 75.7 ms.Besides,the two deep learning models are applied to approach the screening of emerging electrode materials for sodium-ion and potassium-ion batteries.This work can contribute to a high-throughput computational method to accelerate the rational and fast materials discovery and design. 展开更多
关键词 Cathode materials Material design Electrochemical performance prediction Deep learning Metal-ion batteries
下载PDF
Inverse design of nonlinear phononic crystal configurations based on multi-label classification learning neural networks
7
作者 Kunqi Huang Yiran Lin +1 位作者 Yun Lai Xiaozhou Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期295-301,共7页
Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic feature... Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic features exhibit potential applications in acoustic frequency conversion,non-reciprocal wave propagation,and non-destructive testing.Precisely manipulating the harmonic band structure presents a major challenge in the design of nonlinear phononic crystals.Traditional design approaches based on parameter adjustments to meet specific application requirements are inefficient and often yield suboptimal performance.Therefore,this paper develops a design methodology using Softmax logistic regression and multi-label classification learning to inversely design the material distribution of nonlinear phononic crystals by exploiting information from harmonic transmission spectra.The results demonstrate that the neural network-based inverse design method can effectively tailor nonlinear phononic crystals with desired functionalities.This work establishes a mapping relationship between the band structure and the material distribution within phononic crystals,providing valuable insights into the inverse design of metamaterials. 展开更多
关键词 multi-label classification learning nonlinear phononic crystals inverse design
下载PDF
Machine-Learning-Assisted Design of Deep Eutectic Solvents Based on Uncovered Hydrogen Bond Patterns
8
作者 Usman L.Abbas Yuxuan Zhang +4 位作者 Joseph Tapia Selim Md Jin Chen Jian Shi Qing Shao 《Engineering》 SCIE EI CAS CSCD 2024年第8期74-83,共10页
Non-ionic deep eutectic solvents(DESs)are non-ionic designer solvents with various applications in catalysis,extraction,carbon capture,and pharmaceuticals.However,discovering new DES candidates is challenging due to a... Non-ionic deep eutectic solvents(DESs)are non-ionic designer solvents with various applications in catalysis,extraction,carbon capture,and pharmaceuticals.However,discovering new DES candidates is challenging due to a lack of efficient tools that accurately predict DES formation.The search for DES relies heavily on intuition or trial-and-error processes,leading to low success rates or missed opportunities.Recognizing that hydrogen bonds(HBs)play a central role in DES formation,we aim to identify HB features that distinguish DES from non-DES systems and use them to develop machine learning(ML)models to discover new DES systems.We first analyze the HB properties of 38 known DES and 111 known non-DES systems using their molecular dynamics(MD)simulation trajectories.The analysis reveals that DES systems have two unique features compared to non-DES systems:The DESs have①more imbalance between the numbers of the two intra-component HBs and②more and stronger inter-component HBs.Based on these results,we develop 30 ML models using ten algorithms and three types of HB-based descriptors.The model performance is first benchmarked using the average and minimal receiver operating characteristic(ROC)-area under the curve(AUC)values.We also analyze the importance of individual features in the models,and the results are consistent with the simulation-based statistical analysis.Finally,we validate the models using the experimental data of 34 systems.The extra trees forest model outperforms the other models in the validation,with an ROC-AUC of 0.88.Our work illustrates the importance of HBs in DES formation and shows the potential of ML in discovering new DESs. 展开更多
关键词 Machine learning Deep eutectic solvents Molecular dynamics simulations Hydrogen bond Molecular design
下载PDF
The Relationship Between Teaching Space Design and Learning Outcomes
9
作者 Mengdi Zhang 《Journal of Literature and Art Studies》 2024年第10期944-947,共4页
This article focuses on the connection between classroom design and learning outcomes. It discusses how different spatial arrangements, sounds, lights, and furniture affect engagement, motivation, and attention. Good ... This article focuses on the connection between classroom design and learning outcomes. It discusses how different spatial arrangements, sounds, lights, and furniture affect engagement, motivation, and attention. Good classroom design supports various classroom activities, encouraging group work and individual tasks. The flexible layouts encourage Interaction and engagement while sound management minimizes interruptions that support focus. On top of that, the use of general and task-oriented lighting enhances mood and alertness, thereby increasing grades. Also, comfortable furniture helps in achieving attention, hence improving learning. Thus, this holistic perspective indicates that purposeful space designs are important in enhancing students’ academic performance and well-being. 展开更多
关键词 classroom design learning outcomes flexible layouts ACOUSTICS LIGHTING ERGONOMICS cognitive engagement student motivation
下载PDF
Design and Research of an Intelligent Learning System for University Physics
10
作者 Lin Chen 《Journal of Contemporary Educational Research》 2024年第7期95-99,共5页
In order to break through the limitations of traditional teaching,realize the integration of online and offline teaching,and optimize the intelligent learning experience of university physics,this paper proposes the d... In order to break through the limitations of traditional teaching,realize the integration of online and offline teaching,and optimize the intelligent learning experience of university physics,this paper proposes the design of an intelligent learning system for university physics based on cloud computing platforms,and applies this system to teaching environment of university physics.It successfully integrates emerging technologies such as cloud computing,machine learning,and situational awareness,integrates learning context awareness,intelligent recording and broadcasting,resource sharing,learning performance prediction,and content planning and recommendation,and comprehensively improves the quality of university physics teaching.It can optimize the teaching process and deepen intelligent teaching reform,aiming at providing references for the teaching practice of university physics. 展开更多
关键词 UNIVERSITY PHYSICS Intelligent learning System design
下载PDF
Interface Design and Functional Optimization of Chinese Learning Apps Based on User Experience
11
作者 Qihui Hong Jialing Hu Nianxiu Fang 《教育技术与创新》 2024年第2期59-78,共20页
This research paper investigates the interface design and functional optimization of Chinese learning apps through the lens of user experience.With the increasing popularity of Chinese language learning apps in the er... This research paper investigates the interface design and functional optimization of Chinese learning apps through the lens of user experience.With the increasing popularity of Chinese language learning apps in the era of rapid mobile internet development,users'demands for enhanced interface design and interaction experience have grown significantly.The study aims to explore the influence of user feedback on the design and functionality of Chinese learning apps,proposing optimization strategies to improve user experience and learning outcomes.By conducting a comprehensive literature review,utilizing methods such as surveys and user interviews for data collection,and analyzing user feedback,this research identifies existing issues in the interface design and interaction experience of Chinese learning apps.The results present user opinions,feedback analysis,identified problems,improvement directions,and specific optimization strategies.The study discusses the potential impact of these optimization strategies on enhancing user experience and learning outcomes,compares findings with previous research,addresses limitations,and suggests future research directions.In conclusion,this research contributes to enriching the design theory of Chinese learning apps,offering practical optimization recommendations for developers,and supporting the continuous advancement of Chinese language learning apps. 展开更多
关键词 Chinese learning Apps User Experience Interface design Functional Optimization
下载PDF
A Deep Learning-Based Teaching Design for High School Geography Units:Taking the Example of Landforms of the Humanistic Education Edition
12
作者 Xiaojie Yuan Chenguang Zhang +3 位作者 Jiajia Li Jiqiang Niu Xiumei Li Xingjun Shi 《Journal of Contemporary Educational Research》 2024年第2期176-182,共7页
The traditional teaching methods of one-way cultivation of students can no longer meet the requirements of talent cultivation at this stage.The issue of how to promote students from passive acceptance to the independe... The traditional teaching methods of one-way cultivation of students can no longer meet the requirements of talent cultivation at this stage.The issue of how to promote students from passive acceptance to the independent cognitive understanding stage(i.e.deep learning)has become the focus of geography teaching.Therefore,under the guidance of deep learning theory,this paper takes the“landforms”knowledge unit of the Humanistic Education Edition as an example,improves the classroom teaching means through the unit teaching mode,reconstructs the“landforms”teaching unit,and explores the specific teaching of high school geography unit based on deep learning.This study provides a good example and guidelines for high school geography teaching and learning. 展开更多
关键词 Deep learning Unit teaching Geography education Case design High school education
下载PDF
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:4
13
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 Adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
下载PDF
Advances in machine learning-and artificial intelligence-assisted material design of steels 被引量:7
14
作者 Guangfei Pan Feiyang Wang +7 位作者 Chunlei Shang Honghui Wu Guilin Wu Junheng Gao Shuize Wang Zhijun Gao Xiaoye Zhou Xinping Mao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1003-1024,共22页
With the rapid development of artificial intelligence technology and increasing material data,machine learning-and artificial intelligence-assisted design of high-performance steel materials is becoming a mainstream p... With the rapid development of artificial intelligence technology and increasing material data,machine learning-and artificial intelligence-assisted design of high-performance steel materials is becoming a mainstream paradigm in materials science.Machine learning methods,based on an interdisciplinary discipline between computer science,statistics and material science,are good at discovering correlations between numerous data points.Compared with the traditional physical modeling method in material science,the main advantage of machine learning is that it overcomes the complex physical mechanisms of the material itself and provides a new perspective for the research and development of novel materials.This review starts with data preprocessing and the introduction of different machine learning models,including algorithm selection and model evaluation.Then,some successful cases of applying machine learning methods in the field of steel research are reviewed based on the main theme of optimizing composition,structure,processing,and performance.The application of machine learning methods to the performance-oriented inverse design of material composition and detection of steel defects is also reviewed.Finally,the applicability and limitations of machine learning in the material field are summarized,and future directions and prospects are discussed. 展开更多
关键词 machine learning data-driven design new research paradigm high-performance steel
下载PDF
Application of machine learning in perovskite materials and devices:A review
15
作者 Ming Chen Zhenhua Yin +6 位作者 Zhicheng Shan Xiaokai Zheng Lei Liu Zhonghua Dai Jun Zhang Shengzhong(Frank)Liu Zhuo Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期254-272,共19页
Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for m... Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for material discovery and design.ML can be applied to discover new materials quickly and effectively,with significant savings in resources and time compared with traditional experiments and density functional theory(DFT)calculations.In this review,we present the application of ML in per-ovskites and briefly review the recent works in the field of ML-assisted perovskite design.Firstly,the advantages of perovskites in solar cells and the merits of ML applied to perovskites are discussed.Secondly,the workflow of ML in perovskite design and some basic ML algorithms are introduced.Thirdly,the applications of ML in predicting various properties of perovskite materials and devices are reviewed.Finally,we propose some prospects for the future development of this field.The rapid devel-opment of ML technology will largely promote the process of materials science,and ML will become an increasingly popular method for predicting the target properties of materials and devices. 展开更多
关键词 Machine learning PEROVSKITE Materials design Bandgap engineering Stability Crystal structure
下载PDF
A machine learning approach for accelerated design of magnesium alloys.Part B: Regression and property prediction 被引量:4
16
作者 M.Ghorbani M.Boley +1 位作者 P.N.H.Nakashima N.Birbilis 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4197-4205,共9页
Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two... Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two-part study, an ML approach is presented that offers accelerated digital design of Mg alloys. A systematic evaluation of four ML regression algorithms was explored to rationalise the complex relationships in Mg-alloy data and to capture the composition-processing-property patterns. Cross-validation and hold-out set validation techniques were utilised for unbiased estimation of model performance. Using atomic and thermodynamic properties of the alloys, feature augmentation was examined to define the most descriptive representation spaces for the alloy data. Additionally, a graphical user interface(GUI) webtool was developed to facilitate the use of the proposed models in predicting the mechanical properties of new Mg alloys. The results demonstrate that random forest regression model and neural network are robust models for predicting the ultimate tensile strength and ductility of Mg alloys, with accuracies of ~80% and 70% respectively. The developed models in this work are a step towards high-throughput screening of novel candidates for target mechanical properties and provide ML-guided alloy design. 展开更多
关键词 Magnesium alloys Digital alloy design Supervised machine learning Regression models Prediction performance
下载PDF
Toward Next-Generation Heterogeneous Catalysts:Empowering Surface Reactivity Prediction with Machine Learning
17
作者 Xinyan Liu Hong-Jie Peng 《Engineering》 SCIE EI CAS CSCD 2024年第8期25-44,共20页
Heterogeneous catalysis remains at the core of various bulk chemical manufacturing and energy conversion processes,and its revolution necessitates the hunt for new materials with ideal catalytic activities and economi... Heterogeneous catalysis remains at the core of various bulk chemical manufacturing and energy conversion processes,and its revolution necessitates the hunt for new materials with ideal catalytic activities and economic feasibility.Computational high-throughput screening presents a viable solution to this challenge,as machine learning(ML)has demonstrated its great potential in accelerating such processes by providing satisfactory estimations of surface reactivity with relatively low-cost information.This review focuses on recent progress in applying ML in adsorption energy prediction,which predominantly quantifies the catalytic potential of a solid catalyst.ML models that leverage inputs from different categories and exhibit various levels of complexity are classified and discussed.At the end of the review,an outlook on the current challenges and future opportunities of ML-assisted catalyst screening is supplied.We believe that this review summarizes major achievements in accelerating catalyst discovery through ML and can inspire researchers to further devise novel strategies to accelerate materials design and,ultimately,reshape the chemical industry and energy landscape. 展开更多
关键词 Machine learning Heterogeneous catalysis CHEMISORPTION Theoretical simulation Materials design High-throughput screening
下载PDF
A machine learning approach for accelerated design of magnesium alloys. Part A:Alloy data and property space 被引量:3
18
作者 M.Ghorbani M.Boley +1 位作者 P.N.H.Nakashima N.Birbilis 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3620-3633,共14页
Typically, magnesium alloys have been designed using a so-called hill-climbing approach, with rather incremental advances over the past century. Iterative and incremental alloy design is slow and expensive, but more i... Typically, magnesium alloys have been designed using a so-called hill-climbing approach, with rather incremental advances over the past century. Iterative and incremental alloy design is slow and expensive, but more importantly it does not harness all the data that exists in the field. In this work, a new approach is proposed that utilises data science and provides a detailed understanding of the data that exists in the field of Mg-alloy design to date. In this approach, first a consolidated alloy database that incorporates 916 datapoints was developed from the literature and experimental work. To analyse the characteristics of the database, alloying and thermomechanical processing effects on mechanical properties were explored via composition-process-property matrices. An unsupervised machine learning(ML) method of clustering was also implemented, using unlabelled data, with the aim of revealing potentially useful information for an alloy representation space of low dimensionality. In addition, the alloy database was correlated to thermodynamically stable secondary phases to further understand the relationships between microstructure and mechanical properties. This work not only introduces an invaluable open-source database, but it also provides, for the first-time data, insights that enable future accelerated digital Mg-alloy design. 展开更多
关键词 MAGNESIUM Alloy design Mg-alloy database Data analysis Data visualisation Unsupervised machine learning
下载PDF
An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem
19
作者 Feyza AltunbeyÖzbay ErdalÖzbay Farhad Soleimanian Gharehchopogh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1067-1110,共44页
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems... Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms. 展开更多
关键词 Artificial rabbit optimization binary optimization breast cancer chaotic local search engineering design problem opposition-based learning
下载PDF
3D image system improves the learning curve and contributes to medical education of rhinoplasty
20
作者 Chen Cheng Caiyue Liu +1 位作者 Jiafei Yang Yingfan Zhang 《Chinese Journal of Plastic and Reconstructive Surgery》 2024年第2期72-75,共4页
Background: Rhinoplasty is a complex surgical procedure that requires critical analysis and precise design before surgery, making it a challenging operation for both the surgical team and medical educators. This study... Background: Rhinoplasty is a complex surgical procedure that requires critical analysis and precise design before surgery, making it a challenging operation for both the surgical team and medical educators. This study aimed to evaluate the impact of 3D design involvement on learning curves and to establish a more effective method for rhinoplasty education.Methods: Surgeons who participated in an educational program were divided into two groups. The experimental group was involved in the 3D design before the operation, and the control group was asked to review the rhinoplasty atlas. A self-assessment questionnaire was used to evaluate the learning curve of the eight rhinoplasty procedures for each surgeon, and the overall satisfaction rate data were also collected.Results: The self-assessment scores in both groups showed an increasing trend from the first to the eighth operation. The mean scores of the experimental group were significantly higher than those of the control group at the fifth operation(P=0.01). The satisfaction rate of the experimental group(91.7%) was higher than that of the control group(54.5%).Conclusion: The 3D imaging system can improve the learning curve and satisfaction rate of rhinoplasty education,proving that it is an easy and effective tool for medical education. 展开更多
关键词 RHINOPLASTY learning curve Medical education 3D design
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部