The concept of classification through deep learning is to build a model that skillfully separates closely-related images dataset into different classes because of diminutive but continuous variations that took place i...The concept of classification through deep learning is to build a model that skillfully separates closely-related images dataset into different classes because of diminutive but continuous variations that took place in physical systems over time and effect substantially.This study has made ozone depletion identification through classification using Faster Region-Based Convolutional Neural Network(F-RCNN).The main advantage of F-RCNN is to accumulate the bounding boxes on images to differentiate the depleted and non-depleted regions.Furthermore,image classification’s primary goal is to accurately predict each minutely varied case’s targeted classes in the dataset based on ozone saturation.The permanent changes in climate are of serious concern.The leading causes beyond these destructive variations are ozone layer depletion,greenhouse gas release,deforestation,pollution,water resources contamination,and UV radiation.This research focuses on the prediction by identifying the ozone layer depletion because it causes many health issues,e.g.,skin cancer,damage to marine life,crops damage,and impacts on living being’s immune systems.We have tried to classify the ozone images dataset into two major classes,depleted and non-depleted regions,to extract the required persuading features through F-RCNN.Furthermore,CNN has been used for feature extraction in the existing literature,and those extricated diverse RoIs are passed on to the CNN for grouping purposes.It is difficult to manage and differentiate those RoIs after grouping that negatively affects the gathered results.The classification outcomes through F-RCNN approach are proficient and demonstrate that general accuracy lies between 91%to 93%in identifying climate variation through ozone concentration classification,whether the region in the image under consideration is depleted or non-depleted.Our proposed model presented 93%accuracy,and it outperforms the prevailing techniques.展开更多
Tropical cyclone(TC)annual frequency forecasting is significant for disaster prevention and mitigation in Guangdong Province.Based on the NCEP-NCAR reanalysis and NOAA Extended Reconstructed global sea surface tempera...Tropical cyclone(TC)annual frequency forecasting is significant for disaster prevention and mitigation in Guangdong Province.Based on the NCEP-NCAR reanalysis and NOAA Extended Reconstructed global sea surface temperature(SST)V5 data in winter,the TC frequency climatic features and prediction models have been studied.During 1951-2019,353 TCs directly affected Guangdong with an annual average of about 5.1.TCs have experienced an abrupt change from abundance to deficiency in the mid to late 1980 with a slightly decreasing trend and a normal distribution.338 primary precursors are obtained from statistically significant correlation regions of SST,sea level pressure,1000hPa air temperature,850hPa specific humidity,500hPa geopotential height and zonal wind shear in winter.Then those 338 primary factors are reduced into 19 independent predictors by principal component analysis(PCA).Furthermore,the Multiple Linear Regression(MLR),the Gaussian Process Regression(GPR)and the Long Short-term Memory Networks and Fully Connected Layers(LSTM-FC)models are constructed relying on the above 19 factors.For three different kinds of test sets from 2010 to 2019,2011 to 2019 and 2010 to 2019,the root mean square errors(RMSEs)of MLR,GPR and LSTM-FC between prediction and observations fluctuate within the range of 1.05-2.45,1.00-1.93 and 0.71-0.95 as well as the average absolute errors(AAEs)0.88-1.0,0.75-1.36 and 0.50-0.70,respectively.As for the 2010-2019 experiment,the mean deviations of the three model outputs from the observation are 0.89,0.78 and 0.56,together with the average evaluation scores 82.22,84.44 and 88.89,separately.The prediction skill comparisons unveil that LSTM-FC model has a better performance than MLR and GPR.In conclusion,the deep learning model of LSTM-FC may shed light on improving the accuracy of short-term climate prediction about TC frequency.The current research can provide experience on the development of deep learning in this field and help to achieve further progress of TC disaster prevention and mitigation in Guangdong Province.展开更多
智能变电站过程层组网通信质量决定了站内继电保护及自动化等二次设备的安全、稳定和可靠运行。目前主流使用虚拟局域网(Virtual Local Area Network,以下称VLAN)与静态组播技术对智能变电站内大量二次设备进行通信子网划分,以提高组网...智能变电站过程层组网通信质量决定了站内继电保护及自动化等二次设备的安全、稳定和可靠运行。目前主流使用虚拟局域网(Virtual Local Area Network,以下称VLAN)与静态组播技术对智能变电站内大量二次设备进行通信子网划分,以提高组网通信质量与安全水平。但是,高度安全的网络结构意味着维护改造更加困难,实际组网配置方案的优劣还受到复杂的现场情况与其他人为因素影响。本文将结合在运智能变电站实际案例,分析讨论VLAN和静态组播两种技术在过程层组网中的应用,为智能变电站过程层网络配置优化方向提供参考。展开更多
文摘The concept of classification through deep learning is to build a model that skillfully separates closely-related images dataset into different classes because of diminutive but continuous variations that took place in physical systems over time and effect substantially.This study has made ozone depletion identification through classification using Faster Region-Based Convolutional Neural Network(F-RCNN).The main advantage of F-RCNN is to accumulate the bounding boxes on images to differentiate the depleted and non-depleted regions.Furthermore,image classification’s primary goal is to accurately predict each minutely varied case’s targeted classes in the dataset based on ozone saturation.The permanent changes in climate are of serious concern.The leading causes beyond these destructive variations are ozone layer depletion,greenhouse gas release,deforestation,pollution,water resources contamination,and UV radiation.This research focuses on the prediction by identifying the ozone layer depletion because it causes many health issues,e.g.,skin cancer,damage to marine life,crops damage,and impacts on living being’s immune systems.We have tried to classify the ozone images dataset into two major classes,depleted and non-depleted regions,to extract the required persuading features through F-RCNN.Furthermore,CNN has been used for feature extraction in the existing literature,and those extricated diverse RoIs are passed on to the CNN for grouping purposes.It is difficult to manage and differentiate those RoIs after grouping that negatively affects the gathered results.The classification outcomes through F-RCNN approach are proficient and demonstrate that general accuracy lies between 91%to 93%in identifying climate variation through ozone concentration classification,whether the region in the image under consideration is depleted or non-depleted.Our proposed model presented 93%accuracy,and it outperforms the prevailing techniques.
基金National Key R&D Program of China(2017YFA0605004)Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)+4 种基金National Basic R&D Program of China(2018YFA0606203)Special Fund of China Meteorological Administration for Innovation and Development(CXFZ2021J026)Special Fund for Forecasters of China Meteorological Administration(CMAYBY2020-094)Graduate Independent Exploration and Innovation Project of Central South University(2021zzts0477)Science and Technology Planning Program of Guangdong Province(20180207)。
文摘Tropical cyclone(TC)annual frequency forecasting is significant for disaster prevention and mitigation in Guangdong Province.Based on the NCEP-NCAR reanalysis and NOAA Extended Reconstructed global sea surface temperature(SST)V5 data in winter,the TC frequency climatic features and prediction models have been studied.During 1951-2019,353 TCs directly affected Guangdong with an annual average of about 5.1.TCs have experienced an abrupt change from abundance to deficiency in the mid to late 1980 with a slightly decreasing trend and a normal distribution.338 primary precursors are obtained from statistically significant correlation regions of SST,sea level pressure,1000hPa air temperature,850hPa specific humidity,500hPa geopotential height and zonal wind shear in winter.Then those 338 primary factors are reduced into 19 independent predictors by principal component analysis(PCA).Furthermore,the Multiple Linear Regression(MLR),the Gaussian Process Regression(GPR)and the Long Short-term Memory Networks and Fully Connected Layers(LSTM-FC)models are constructed relying on the above 19 factors.For three different kinds of test sets from 2010 to 2019,2011 to 2019 and 2010 to 2019,the root mean square errors(RMSEs)of MLR,GPR and LSTM-FC between prediction and observations fluctuate within the range of 1.05-2.45,1.00-1.93 and 0.71-0.95 as well as the average absolute errors(AAEs)0.88-1.0,0.75-1.36 and 0.50-0.70,respectively.As for the 2010-2019 experiment,the mean deviations of the three model outputs from the observation are 0.89,0.78 and 0.56,together with the average evaluation scores 82.22,84.44 and 88.89,separately.The prediction skill comparisons unveil that LSTM-FC model has a better performance than MLR and GPR.In conclusion,the deep learning model of LSTM-FC may shed light on improving the accuracy of short-term climate prediction about TC frequency.The current research can provide experience on the development of deep learning in this field and help to achieve further progress of TC disaster prevention and mitigation in Guangdong Province.
文摘智能变电站过程层组网通信质量决定了站内继电保护及自动化等二次设备的安全、稳定和可靠运行。目前主流使用虚拟局域网(Virtual Local Area Network,以下称VLAN)与静态组播技术对智能变电站内大量二次设备进行通信子网划分,以提高组网通信质量与安全水平。但是,高度安全的网络结构意味着维护改造更加困难,实际组网配置方案的优劣还受到复杂的现场情况与其他人为因素影响。本文将结合在运智能变电站实际案例,分析讨论VLAN和静态组播两种技术在过程层组网中的应用,为智能变电站过程层网络配置优化方向提供参考。