Carbon nanotube field-effect transistors(CNTFETs)are increasingly recognized as a viable option for creating high-performance,low-power,and densely integrated circuits(ICs).Advancements in carbon-based electronics,enc...Carbon nanotube field-effect transistors(CNTFETs)are increasingly recognized as a viable option for creating high-performance,low-power,and densely integrated circuits(ICs).Advancements in carbon-based electronics,encompassing materials and device technology,have enabled the fabrication of circuits with over 1000 gates,marking carbon-based integrated circuit design as a burgeoning field of research.A critical challenge in the realm of carbon-based very-large-scale integration(VLSI)is the lack of suitable automated design methodologies and infrastructure platforms.In this study,we present the development of a waferscale 3μm carbon-based complementary metal-oxide-semiconductor(CMOS)process design kit(PDK)(3μm-CNTFETs-PDK)compatible with silicon-based Electronic Design Automation(EDA)tools and VLSI circuit design flow.The proposed 3μm-CNTFETs-PDK features a contacted gate pitch(CGP)of 21μm,a gate density of 128 gates/mm^(2),and a transistor density of 554 transistors/mm^(2),with an intrinsic gate delay around 134 ns.Validation of the 3μm-CNTFETs-PDK was achieved through the successful design and tape-out of 153 standard cells and 333-stage ring oscillator circuits.Leveraging the carbon-based PDK and a silicon-based design platform,we successfully implemented a complete 64-bit static random-access memory(SRAM)circuit system for the first time,which exhibited timing,power,and area characteristics of clock@10 kHz,122.1μW,3795μm×2810μm.This research confirms that carbon-based IC design can be compatible with existing EDA tools and silicon-based VLSI design flow,thereby laying the groundwork for future carbon-based VLSI advancements.展开更多
基金The authors gratefully acknowledge fundings from the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)(No.XDA0330401)CAS Youth Interdisciplinary Team(No.JCTD-2022-07).
文摘Carbon nanotube field-effect transistors(CNTFETs)are increasingly recognized as a viable option for creating high-performance,low-power,and densely integrated circuits(ICs).Advancements in carbon-based electronics,encompassing materials and device technology,have enabled the fabrication of circuits with over 1000 gates,marking carbon-based integrated circuit design as a burgeoning field of research.A critical challenge in the realm of carbon-based very-large-scale integration(VLSI)is the lack of suitable automated design methodologies and infrastructure platforms.In this study,we present the development of a waferscale 3μm carbon-based complementary metal-oxide-semiconductor(CMOS)process design kit(PDK)(3μm-CNTFETs-PDK)compatible with silicon-based Electronic Design Automation(EDA)tools and VLSI circuit design flow.The proposed 3μm-CNTFETs-PDK features a contacted gate pitch(CGP)of 21μm,a gate density of 128 gates/mm^(2),and a transistor density of 554 transistors/mm^(2),with an intrinsic gate delay around 134 ns.Validation of the 3μm-CNTFETs-PDK was achieved through the successful design and tape-out of 153 standard cells and 333-stage ring oscillator circuits.Leveraging the carbon-based PDK and a silicon-based design platform,we successfully implemented a complete 64-bit static random-access memory(SRAM)circuit system for the first time,which exhibited timing,power,and area characteristics of clock@10 kHz,122.1μW,3795μm×2810μm.This research confirms that carbon-based IC design can be compatible with existing EDA tools and silicon-based VLSI design flow,thereby laying the groundwork for future carbon-based VLSI advancements.