Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although ther...Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although there have been some analyses theoretically for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel of human body. This paper presents a mathematical model to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. A 3D flow field of magnetic particles in a blood vessel model is numerically simulated in order to further understand clinical application of magnetic targeting drug delivery. Simulation results show that magnetic nanoparticles can be enriched in a target region depending on the applied magnetic field intensity. Magnetic resonance imaging confirms the enrichment of ferrofluids in a desired body tissue of Sprague-Dawley rats. The simulation results coincide with those animal experiments. Results of the analysis provide the important information and can suggest strategies for improving delivery in favor of the clinical application.展开更多
The filling and exhausting processes in a pneumatic system are involved with many factors, and numerical solutions of many partial differential equations are always adapted in the study of those processes, which have ...The filling and exhausting processes in a pneumatic system are involved with many factors, and numerical solutions of many partial differential equations are always adapted in the study of those processes, which have been proved to be troublesome and less intuitive. Analytical solutions based on loss-less tube model and average friction tube model are found respectively by using fluid net theory, and they fit the experimental results well. The research work shows that: Fluid net theory can be used to solve the analytical solution of filling and exhausting processes of pneumatic system, and the result of loss-less tube model is close to that of average friction model, so loss-less tube model is recommended since it is simpler, and the difference between filling time and exhausting time is determined by initial and final pressures, the volume of container and the section area of tube, and has nothing to do with the length of the tube.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50875169)National Basic Research Program of China (973 Program, Grant No. 2007CB936004).
文摘Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although there have been some analyses theoretically for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel of human body. This paper presents a mathematical model to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. A 3D flow field of magnetic particles in a blood vessel model is numerically simulated in order to further understand clinical application of magnetic targeting drug delivery. Simulation results show that magnetic nanoparticles can be enriched in a target region depending on the applied magnetic field intensity. Magnetic resonance imaging confirms the enrichment of ferrofluids in a desired body tissue of Sprague-Dawley rats. The simulation results coincide with those animal experiments. Results of the analysis provide the important information and can suggest strategies for improving delivery in favor of the clinical application.
基金This project is supported by National Natural Science Foundation of China(No.50575209).
文摘The filling and exhausting processes in a pneumatic system are involved with many factors, and numerical solutions of many partial differential equations are always adapted in the study of those processes, which have been proved to be troublesome and less intuitive. Analytical solutions based on loss-less tube model and average friction tube model are found respectively by using fluid net theory, and they fit the experimental results well. The research work shows that: Fluid net theory can be used to solve the analytical solution of filling and exhausting processes of pneumatic system, and the result of loss-less tube model is close to that of average friction model, so loss-less tube model is recommended since it is simpler, and the difference between filling time and exhausting time is determined by initial and final pressures, the volume of container and the section area of tube, and has nothing to do with the length of the tube.
文摘引入了一种二元Lattice Boltzmann Model(LBM),实现了两种液体组成的混合流的模拟.不同于其它的类似模型,它区分考虑了流体的粘性和扩散特性,可以很容易地模拟各种互溶或者不互溶的混合流现象.此外,由于LBM的运算大都是线性的局部运算,这使得它很容易在可编程图形处理器(Graphics Process Unit,GPU)上进行加速,从而进行实时模拟.给出了若干二元混合流的模拟结果.