This paper investigates the feedback control of hidden Markov process(HMP) in the face of loss of some observation processes.The control action facilitates or impedes some particular transitions from an inferred cur...This paper investigates the feedback control of hidden Markov process(HMP) in the face of loss of some observation processes.The control action facilitates or impedes some particular transitions from an inferred current state in the attempt to maximize the probability that the HMP is driven to a desirable absorbing state.This control problem is motivated by the need for judicious resource allocation to win an air operation involving two opposing forces.The effectiveness of a receding horizon control scheme based on the inferred discrete state is examined.Tolerance to loss of sensors that help determine the state of the air operation is achieved through a decentralized scheme that estimates a continuous state from measurements of linear models with additive noise.The discrete state of the HMP is identified using three well-known detection schemes.The sub-optimal control policy based on the detected state is implemented on-line in a closed-loop,where the air operation is simulated as a stochastic process with SimEvents,and the measurement process is simulated for a range of single sensor loss rates.展开更多
Security tools are rapidly developed as network security threat is becoming more and more serious.To overcome the fundamental limitation of traditional host-based anti-malware system which is likely to be deceived and...Security tools are rapidly developed as network security threat is becoming more and more serious.To overcome the fundamental limitation of traditional host-based anti-malware system which is likely to be deceived and attacked by malicious codes,VMM-based anti-malware systems have recently become a hot research field.In this article,the existing malware hiding technique is analyzed,and a detecting model for hidden process based on "In-VM" idea is also proposed.Based on this detecting model,a hidden process detection technology which is based on HOOK SwapContext on the VMM platform is also implemented successfully.This technology can guarantee the detecting method not to be attacked by malwares and also resist all the current process hiding technologies.In order to detect the malwares which use remote injection method to hide themselves,a method by hijacking sysenter instruction is also proposed.Experiments show that the proposed methods guarantee the isolation of virtual machines,can detect all malware samples,and just bring little performance loss.展开更多
Aspects of human behavior in cyber security allow more natural security to the user. This research focuses the appearance of anticipating cyber threats and their abstraction hierarchy levels on the mental picture leve...Aspects of human behavior in cyber security allow more natural security to the user. This research focuses the appearance of anticipating cyber threats and their abstraction hierarchy levels on the mental picture levels of human. The study concerns the modeling of the behaviors of mental states of an individual under cyber attacks. The mental state of agents being not observable, we propose a non-stationary hidden Markov chain approach to model the agent mental behaviors. A renewal process based on a nonparametric estimation is also considered to investigate the spending time in a given mental state. In these approaches, the effects of the complexity of the cyber attacks are taken into account in the models.展开更多
Nowadays remote sensing is an important technique for observing Earth surface applied to different areas such as, land use, urban planning, remote monitoring, real time deformation of the soil that can be associated w...Nowadays remote sensing is an important technique for observing Earth surface applied to different areas such as, land use, urban planning, remote monitoring, real time deformation of the soil that can be associated with earthquakes or landslides, the variations in thickness of the glaciers, the measurement of volume changes in the case of volcanic eruptions, deforestation, etc. To follow the evolution of these phenomena and to predict their future states, many approaches have been proposed. However, these approaches do not respond completely to the specialists who process yet more commonly the data extracted from the images in their studies to predict the future. In this paper, we propose an innovative methodology based on hidden Markov models (HMM). Our approach exploits temporal series of satellite images in order to predict spatio-temporal phenomena. It uses HMM for representing and making prediction concerning any objects in a satellite image. The first step builds a set of feature vectors gathering the available information. The next step uses a Baum-Welch learning algorithm on these vectors for detecting state changes. Finally, the system interprets these changes to make predictions. The performance of our approach is evaluated by tests of space-time interpretation of events conducted over two study sites, using different time series of SPOT images and application to the change in vegetation with LANDSAT images.展开更多
文摘This paper investigates the feedback control of hidden Markov process(HMP) in the face of loss of some observation processes.The control action facilitates or impedes some particular transitions from an inferred current state in the attempt to maximize the probability that the HMP is driven to a desirable absorbing state.This control problem is motivated by the need for judicious resource allocation to win an air operation involving two opposing forces.The effectiveness of a receding horizon control scheme based on the inferred discrete state is examined.Tolerance to loss of sensors that help determine the state of the air operation is achieved through a decentralized scheme that estimates a continuous state from measurements of linear models with additive noise.The discrete state of the HMP is identified using three well-known detection schemes.The sub-optimal control policy based on the detected state is implemented on-line in a closed-loop,where the air operation is simulated as a stochastic process with SimEvents,and the measurement process is simulated for a range of single sensor loss rates.
基金National High Technical Research and Development Program of China(863 Program)under Grant No. 2008AA01Z414
文摘Security tools are rapidly developed as network security threat is becoming more and more serious.To overcome the fundamental limitation of traditional host-based anti-malware system which is likely to be deceived and attacked by malicious codes,VMM-based anti-malware systems have recently become a hot research field.In this article,the existing malware hiding technique is analyzed,and a detecting model for hidden process based on "In-VM" idea is also proposed.Based on this detecting model,a hidden process detection technology which is based on HOOK SwapContext on the VMM platform is also implemented successfully.This technology can guarantee the detecting method not to be attacked by malwares and also resist all the current process hiding technologies.In order to detect the malwares which use remote injection method to hide themselves,a method by hijacking sysenter instruction is also proposed.Experiments show that the proposed methods guarantee the isolation of virtual machines,can detect all malware samples,and just bring little performance loss.
文摘Aspects of human behavior in cyber security allow more natural security to the user. This research focuses the appearance of anticipating cyber threats and their abstraction hierarchy levels on the mental picture levels of human. The study concerns the modeling of the behaviors of mental states of an individual under cyber attacks. The mental state of agents being not observable, we propose a non-stationary hidden Markov chain approach to model the agent mental behaviors. A renewal process based on a nonparametric estimation is also considered to investigate the spending time in a given mental state. In these approaches, the effects of the complexity of the cyber attacks are taken into account in the models.
文摘Nowadays remote sensing is an important technique for observing Earth surface applied to different areas such as, land use, urban planning, remote monitoring, real time deformation of the soil that can be associated with earthquakes or landslides, the variations in thickness of the glaciers, the measurement of volume changes in the case of volcanic eruptions, deforestation, etc. To follow the evolution of these phenomena and to predict their future states, many approaches have been proposed. However, these approaches do not respond completely to the specialists who process yet more commonly the data extracted from the images in their studies to predict the future. In this paper, we propose an innovative methodology based on hidden Markov models (HMM). Our approach exploits temporal series of satellite images in order to predict spatio-temporal phenomena. It uses HMM for representing and making prediction concerning any objects in a satellite image. The first step builds a set of feature vectors gathering the available information. The next step uses a Baum-Welch learning algorithm on these vectors for detecting state changes. Finally, the system interprets these changes to make predictions. The performance of our approach is evaluated by tests of space-time interpretation of events conducted over two study sites, using different time series of SPOT images and application to the change in vegetation with LANDSAT images.