La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and char...La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and characteristics of LSGM, LSCM and LSFM were tested via X-ray diffraction(XRD), scanning electron microcopy (SEM), A C impedance and four-probe direct current techniques. XRD shows that pure perovskite phase LSGM electrolyte and electrode (LSCM anode and LSFM cathode) materials were prepared after being sintered at 1400℃for 20 h and at 1000℃for 5 h, respectively. The max conductivities of LSGM (ionic conductivity), LSCM (total conductivity) and LSFM (total conductivity) materials are 0.02, 10, 16 S·cm-1 in the air below 850℃, respectively. The conductivity of LSCM becomes smaller when the atmosphere changes from air to pure hydrogen at the same temperature and it decreases with the temperature like metal. The porous and LSGM-based LSCM anode and LSFM cathode films were prepared by screen printing method, and the sintering temperatures for them were 1300 and 1250℃, respectively. LSGM and electrode (LSCM and LSFM) materials have good thermal and chemical compatibility.展开更多
Carbon-coated lithium manganese silicate (Li2MnSiO4/C) nanoparticles were synthesized by polyol process. X-ray diffraction (XRD) patterns of the obtained materials exhibit a good fit with that of the Li2MnSiO4 pha...Carbon-coated lithium manganese silicate (Li2MnSiO4/C) nanoparticles were synthesized by polyol process. X-ray diffraction (XRD) patterns of the obtained materials exhibit a good fit with that of the Li2MnSiO4 phase. Field emission scanning electron microscopy (FESEM) images of the obtained samples show that the particle size is only tens of nanometers. The high resolution transmission electron microscopy (HRTEM) analysis shows that the Li2MnSiO4 nanoparticles are surrounded by a very thin film of amorphous carbon. The composite prepared through polyol process shows good performance as cathode materials in lithium cells at room temperature. The charge capacity of the Li2MnSiO4/C samples is 219 mAh/g (about 1.3 Li^+ per unit formula extracted), and the discharge capacity is 132 mAh/g (about 0.8 Li^+ per unit formula inserted) in the first cycle in the voltage range of 1.5-4.8 V. A good capacity cycling maintenance of 81.8% after 10 cycles was obtained.展开更多
Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the cera...Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the ceramic materials such as cermet, ZTA, TZP, TZP/Al2O3, TZP/TiC/Al2O3, PSZ and Sialon, etc., with rare earth yttrium, lanthanum and cerium, and so on working as additives, were investigated and analyzed in the present study. Problems existed in the research and application of rare earth ceramic die materials were discussed. Rare earth additives can effectively improve the mechanical property and engineering performance of ceramic die materials. Thus, it will have further perspectives of wider application. More attention should be paid in the future to the toughening and strengthening of the ceramic die materials, the adding forms and kinds of rare earth elements and acting mechanisms of rare earth additives in ceramic die materials.展开更多
The influences of the thermomechanical processing, including the solidification conditions, the cold deformation and the intermediate annealing treatment, on the structure and properties of the Cu-10Ag alloy in situ c...The influences of the thermomechanical processing, including the solidification conditions, the cold deformation and the intermediate annealing treatment, on the structure and properties of the Cu-10Ag alloy in situ composite were studied in this paper. The cast structure and the structural changes in the cold deformation and intermediate annealing process were observed. The properties including the ultimate tensile strength (UTS) and the electrical conductivity were determined. A two-stage strain strengthening effect for the Cu-10Ag alloy in situ filamentary composite was observed. The factors influencing the UTS and conductivity were discussed. The solidification conditions in the range of 10-1000 K/s cooling rates and the intermediate heat treatment showed obviously influence on the structure and properties on the Cu-10Ag alloy in situ filamentary composite. The typical properties of the Cu-Ag alloy in situ filamentary composites through thermomechanical processing were reported.展开更多
Refill friction stir spot welding(RFSSW)provides a novel method to join similar and/or dissimilar metallic materials without a key-hole in the center of the joint.Having the key-hole free characterization,the similar/...Refill friction stir spot welding(RFSSW)provides a novel method to join similar and/or dissimilar metallic materials without a key-hole in the center of the joint.Having the key-hole free characterization,the similar/dissimilar RFSSW joint exhibits remarkable and endurable characteristics,including high shear strength,long fatigue life,and strong corrosion resistance.In the meanwhile,as the key-hole free joint has different microstructures compared with conventional friction stir spot welding,thus the RFSSW joint shall possess different shear and fatigue fracture mechanisms,which needs further investigation.To explore the underlying failure mechanism,the similar/dissimilar metallic material joining parameters and pre-treatment,mechanical properties,as well as fracture mechanisms under this novel technology will be discussed.In details,the welding tool design,welding parameters setting,and the influence of processing on the lap shear and fatigue properties,as well as the corrosion resistance will be mainly discussed.Moreover,the roadmap of RFFSW is also discussed.展开更多
Ce0.8Ca0.2O1.8 (CDC82) anode material was prepared by glycine-nitrate process(GNP). Thermogravimetric(TG) analysis and differential scanning calorimetric(DSC) methods were adopted to characterize the reaction process ...Ce0.8Ca0.2O1.8 (CDC82) anode material was prepared by glycine-nitrate process(GNP). Thermogravimetric(TG) analysis and differential scanning calorimetric(DSC) methods were adopted to characterize the reaction process of CDC82 material. X-ray diffractometry(XRD), scanning electron microcopy(SEM), direct current four probe (four-probe DC) and temperature process reduce(TPR) techniques were adopted to characterize the properties of CDC82 material. After the precursor was sintered at 750 ℃ for 4 h, CDC82 material with pure-fluorite structure and nanometer size was obtained. The total conductivity of CDC82 changes little with temperature in air at 50?850 ℃ , and the maximum value is 0.04 S/cm at 750 ℃ . The total conductivity wholly becomes larger when the atmosphere changes from air to hydrogen, which greatly increases with increasing temperature and reaches the maximum value of 1.09 S/cm at 850 ℃. Some impurities such as CeMg and La2O3 exist after the mixture of CDC82 anode and La1?xSrxGa1?yMgyO3?δ (LSGM) electrolyte material is sintered at 1 200 ℃ for 15 h. The CDC82 material as anode material has excellent catalytic property for hydrogen and methane.展开更多
The effects of the alloy preparation methods, including the conventional casting, annealing and melt-spinning, on the crystallographic and electrochemical properties of the Co-free LaNi4.95Sn0.3 alloy samples were inv...The effects of the alloy preparation methods, including the conventional casting, annealing and melt-spinning, on the crystallographic and electrochemical properties of the Co-free LaNi4.95Sn0.3 alloy samples were investigated. The results reveal that the as-cast alloy consists of a main phase of CaCu5-type structure and a little second phase (Sn) with noticeable composition segregation and rather poor cycling stability (S200=40.1%). While the annealed and melt-spun alloys are of single CaCu5-type structure phase with a more homogeneous composition and lower cell volume expansion rate (?V/V) on hydriding, and a dramatically improved cyclic stability (S200=73.6%?76.2%), although their activation rate, initial capacity and high-rate dischargeability are lowered somewhat. It is found that the decrease in both the electrocatalytic activity and the hydrogen diffusion rate of the annealed and melt-spun alloys is the main cause for their relatively lower high-rate dischargeability, and the improved cycling stability is due to their lower volume expansion on hydriding and more uniform composition.展开更多
TiC particle reinforced 420 stainless steel matrix composites were fabricated, and the microstructure, tensile properties and wear resistance of the composites were studied. The experimental results indicate that the ...TiC particle reinforced 420 stainless steel matrix composites were fabricated, and the microstructure, tensile properties and wear resistance of the composites were studied. The experimental results indicate that the distribution of TiC particles with size of 5 to 10 μm in diameter is uniform if the volume fraction of TiC is lower than 6%. However, slight agglomeration can be observed when the TiC content exceeds 6%. With the increase of TiC content the tensile and yield strength of the composites prepared increases and reaches the maximum when the volume fraction of TiC increases to 5%. Further increase of TiC content causes reductions of yield and tensile strength. The ductility of the composites shows a monotone decrease with the increase of TiC addition. The introduction of TiC into 420 stainless steel results in significant improvement on wear resistance, which reaches a steady level when the volume fraction of TiC increases to 11% and does not show obvious variation if the TiC content is further increased.展开更多
W-type barium ferrites doped with Gd^3+,Ba1-xGdx(Zn0.3Co0.7)2Fe16O27(x = 0,0.05,0.10,0.15,0.20),were prepared by a sol-gel method.The effects of Gd^3+ substitution on their microstructure,electromagnetic propert...W-type barium ferrites doped with Gd^3+,Ba1-xGdx(Zn0.3Co0.7)2Fe16O27(x = 0,0.05,0.10,0.15,0.20),were prepared by a sol-gel method.The effects of Gd^3+ substitution on their microstructure,electromagnetic properties and microwave absorptive behavior were analyzed.The XRD patterns showed the single phase of W-type barium ferrite when x ≤ 0.15.Microwave electromagnetic properties of samples were studied at the frequency range from 2 GHz to 18 GHz using a network analyzer(Agilent 8722ET).The complex permittivity ε(ε',ε'') increased gradually when x ≤ 0.10,but it decreased as x = 0.15.The real permeability(μ') decreased with the increase of Gd^3+ content,while the imaginary permeability(μ'') increased when x ≤ 0.10.All these reasons were discussed using the electromagnetic theory.Furthermore,the ferrite-epoxy compound coating materials with 80 wt.% of Ba0.9Gd0.1(Zn0.3Co0.7)2Fe16O27 were prepared to measure the microwave absorbing properties.The maximum of reflection loss(RL) reached about-27 dB and RL was below-10 dB in the frequency range of 8-18 GHz when the thickness was 1.92 mm.展开更多
Sludge,solid waste of sewage treatment plants,poses a threat as a secondary pollution if it is not handled properly.In this study,artifical ceramsite filter material(ACFM)for water treatment,was obtained from sludge b...Sludge,solid waste of sewage treatment plants,poses a threat as a secondary pollution if it is not handled properly.In this study,artifical ceramsite filter material(ACFM)for water treatment,was obtained from sludge by high-temperature sintering process,and then it’s physical properties,leaching toxicity and sintering mechanisms were investigated.The results showed that the preferred conditions for the preparation of ACFM were that the mass ratio of sludge,river sediment and fly ash was 5∶4∶1,preheated at 400℃for 20 min and sintered at 1 150℃for 5 min.After the optimal sintering conditions treatment,the physical properties of the rate of breaking and wear,solubility in hydrochloric acid,silt carrying capacity,void fraction and Brunauer-Emmett-Teller(BET)specific surface area of ACFM were 0.2%,0.01%,0.2%,71.1%and 0.75×104cm2/g,respectively.The results confirmed that the ACFM’s physical properties were totally aligned to the requirements of China’s industry standard(CJ/T 299—2008).The leaching toxicity results indicated that the leaching contents of heavy metals,such as Cr,Zn and Cu,were much lower than the thresholds of China’s national standards(GB 5085.3—2007 and GB 8978—1996).展开更多
The physical modelanditsequivalentcircuitoftestapparatusissetup by meansofimpedanceanalysis method. The magnetostriction coefficient, magnetomechanicalcoupling coefficient,frequency and anti- frequency of TbxDy1 - xFe...The physical modelanditsequivalentcircuitoftestapparatusissetup by meansofimpedanceanalysis method. The magnetostriction coefficient, magnetomechanicalcoupling coefficient,frequency and anti- frequency of TbxDy1 - xFe2 - z(0 27 ≤x ≤0 3 ,0 ≤z ≤0 1) rod are measured. Somecoupling problems with mechanicalstress and electromagnetic field such as flux leakage in magnetic path are discussed. The comparing calculated with tested resultsshowsthe accuracyof measurementand thesimplification of model.展开更多
The electrochemical properties of spinel compound LiNi0.5Mn1.2Ti0.3O4 were investigated in this study.The chemicals LiAc·2H2O,Mn(Ac)2·2H2O,Ni(Ac)2·4H2O,and Ti(OCH3)4 were used to synthesize LiNi0....The electrochemical properties of spinel compound LiNi0.5Mn1.2Ti0.3O4 were investigated in this study.The chemicals LiAc·2H2O,Mn(Ac)2·2H2O,Ni(Ac)2·4H2O,and Ti(OCH3)4 were used to synthesize LiNi0.5Mn1.2Ti0.3O4 by a simple sol-gel method.The discharge capacity of the sample reached 134 mAh/g at a current rate of 0.1C.The first and fifth cycle voltammogram almost overlapped,which showed that the prepared sample LiNi0.5Mn1.2Ti0.3O4 had excellent good cycle performance.There were two oxidation peaks at 4.21 V and 4.86 V,and two reduction peaks at 4.55 V and 3.88 V in the cycle voltammogram,respectively.By electrochemical impedance spectroscopy and its fitted result,the lithium ion diffusion coefficient was measured to be approximately 7.76 × 10?11 cm2/s.展开更多
PSN-PZN-PZT + x wt. %Cr2O3, X = 0.0-0-9, were prepared by conventional mixed oxide techniques at sintering temperatures of 1220 degrees C-1300 degrees C for 2 h. The effect of sintering temperature on the microstructu...PSN-PZN-PZT + x wt. %Cr2O3, X = 0.0-0-9, were prepared by conventional mixed oxide techniques at sintering temperatures of 1220 degrees C-1300 degrees C for 2 h. The effect of sintering temperature on the microstructure and the piezoelectric properties was investigated by XRD, SEM, and other conventional measurement. The result indicated that with temperature increasing, the valence of Cr ion from Cr5+ or Cr6+ changes into C3+, and the piezoelectric properties turn hard. With increasing Cr2O3 content, the amount of rhombohedral phases increases and the morphotropic boundary phase is correspondingly shifts to rhombohedral phase. A uniform microstructure and excellent comprehensive properties were obtained at 1240 degrees C as the amount of Cr2O3 is 0.5 wt.%.展开更多
The main research purpose of this paper is to study the mechanical properties of the sand gravel packing of the retaining wall under the creep condition of reinforced materials, in order to figure it out, Indoor physi...The main research purpose of this paper is to study the mechanical properties of the sand gravel packing of the retaining wall under the creep condition of reinforced materials, in order to figure it out, Indoor physical experiments were carried out.展开更多
Mathematical models are been proposed to simulate the thermal and metallurgical behaviors of the strip occtLrring on the run-out table (ROT) in a hot strip mill. A variational method is utilized for the discretizati...Mathematical models are been proposed to simulate the thermal and metallurgical behaviors of the strip occtLrring on the run-out table (ROT) in a hot strip mill. A variational method is utilized for the discretization of the governing transient conduction-convection equation, with heat transfer coefficients adaptively determined by the actual mill data. To consider the thermal effect of phase transformation during cooling, a constitutive equation for describing austenite decomposition kinetics of steel in air and water cooling zones is coupled with the heat transfer model. As the basic required inputs in the numerical simulations, thermal material properties are experimentally measured for three carbon steels and the least squares method is used to statistically derive regression models for the properties, including specific heat and thermal conductivity. The numerical simulation and experimental results show that the setup accuracy of the temperature prediction system of ROT is effectively improved.展开更多
The aim of present work is fabrication of Al/Al2Cu in situ nanocomposite by friction stir processing(FSP)as well asinvestigation of FPS parameters such as rotational speed,travel speed,number of FSP passes,and pin pro...The aim of present work is fabrication of Al/Al2Cu in situ nanocomposite by friction stir processing(FSP)as well asinvestigation of FPS parameters such as rotational speed,travel speed,number of FSP passes,and pin profile on the microstructure,chemical reaction,and microhardness of Al based nanocomposite.The Al2Cu particles were formed rapidly due to mechanicallyactivated effect of FSP as well as high heat generation due to Al?Cu exothermic reaction.The microstructure of the nanocompositesconsisted of a finer grained aluminium matrix(~15μm),unreacted Cu nanoparticles(~40nm),and reinforcement nanoparticles ofAl2Cu.Irregular morphology of Al2Cu is attributed to the local melting during FSP.Pin diameter has a higher effect on themicrostructure and hardness values.The hardness measurements exhibited enhancement by57%compared with the base metal.展开更多
La1-xSrxCr1-yMnyO3-δ(LSCM) anode materials were synthesized by glycine nitrate process(GNP). Thermo-gravimetric analysis(TGA) and differential scanning calorimetric(DSC) methods were adopted to investigate the reacti...La1-xSrxCr1-yMnyO3-δ(LSCM) anode materials were synthesized by glycine nitrate process(GNP). Thermo-gravimetric analysis(TGA) and differential scanning calorimetric(DSC) methods were adopted to investigate the reaction process of LSCM anode materials. The oxides prepared were characterized via X-ray diffraction(XRD),scanning electron microscope and energy dispersive spectroscopy(SEM-EDS),direct current four-electrode and temperature process reduction(TPR) techniques. XRD patterns indicate that perovskite phase created after the precursor was sintered at 1 000 ℃ for 5 h,and single perovskite-type oxides formed after the precursor were sintered at 1 200 ℃ for 5 h. The powders are micrometer size after sintering at 1 000 ℃ and 1 200 ℃,respectively. The conductivities of LSCM samples increase linearly with increasing the temperature from 250 ℃ to 850 ℃ in air and the maximum value is 32 S/cm for La0.7Sr0.3Cr0.5Mn0.5O3-δ. But it is lower about two orders of magnitude in pure hydrogen or methane than that of the same sample in the air. TPR result indicates that LSCM offers excellently catalytic performance.展开更多
The suitable test equipment for wire-drawing was designed. Wire-drawing tests were carried on with this equipment for TiC/Al2O3 ceramic wire-drawing die. Effect of lubrication medium and drawing velocity on the drawin...The suitable test equipment for wire-drawing was designed. Wire-drawing tests were carried on with this equipment for TiC/Al2O3 ceramic wire-drawing die. Effect of lubrication medium and drawing velocity on the drawing force was investigated. The wear mechanisms of the ceramic drawing dies were investigated. Worn bore surfaces of the ceramic drawing dies were examined by scanning electron microscopy. The results show that lubricant media have great influence on the drawing force. The drawing force is the smallest when a grease lubricant is used. But alteration of drawing velocity has scarcely any influence on the drawing force. Detailed observations and analyses of the die wear surface reveal that the most common failure of the ceramic drawing die is the wear in the invariable zone and bearing zone owing to the greater press stresses. Abrasive and adhesive wear are found to be the predominant wear mechanisms for ceramic drawing die.展开更多
基金Project supported by the National Natural Science Foundation of China (50204007)the Foundation of Yunnan Province (2005PY01-33)
文摘La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and characteristics of LSGM, LSCM and LSFM were tested via X-ray diffraction(XRD), scanning electron microcopy (SEM), A C impedance and four-probe direct current techniques. XRD shows that pure perovskite phase LSGM electrolyte and electrode (LSCM anode and LSFM cathode) materials were prepared after being sintered at 1400℃for 20 h and at 1000℃for 5 h, respectively. The max conductivities of LSGM (ionic conductivity), LSCM (total conductivity) and LSFM (total conductivity) materials are 0.02, 10, 16 S·cm-1 in the air below 850℃, respectively. The conductivity of LSCM becomes smaller when the atmosphere changes from air to pure hydrogen at the same temperature and it decreases with the temperature like metal. The porous and LSGM-based LSCM anode and LSFM cathode films were prepared by screen printing method, and the sintering temperatures for them were 1300 and 1250℃, respectively. LSGM and electrode (LSCM and LSFM) materials have good thermal and chemical compatibility.
文摘Carbon-coated lithium manganese silicate (Li2MnSiO4/C) nanoparticles were synthesized by polyol process. X-ray diffraction (XRD) patterns of the obtained materials exhibit a good fit with that of the Li2MnSiO4 phase. Field emission scanning electron microscopy (FESEM) images of the obtained samples show that the particle size is only tens of nanometers. The high resolution transmission electron microscopy (HRTEM) analysis shows that the Li2MnSiO4 nanoparticles are surrounded by a very thin film of amorphous carbon. The composite prepared through polyol process shows good performance as cathode materials in lithium cells at room temperature. The charge capacity of the Li2MnSiO4/C samples is 219 mAh/g (about 1.3 Li^+ per unit formula extracted), and the discharge capacity is 132 mAh/g (about 0.8 Li^+ per unit formula inserted) in the first cycle in the voltage range of 1.5-4.8 V. A good capacity cycling maintenance of 81.8% after 10 cycles was obtained.
基金Project supported by National Natural Science Foundation of China (50405047)Natural Science foundation of Shandong Province (Y2005F04)Jinan Young Star Plan of Science and Technology (08108)
文摘Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the ceramic materials such as cermet, ZTA, TZP, TZP/Al2O3, TZP/TiC/Al2O3, PSZ and Sialon, etc., with rare earth yttrium, lanthanum and cerium, and so on working as additives, were investigated and analyzed in the present study. Problems existed in the research and application of rare earth ceramic die materials were discussed. Rare earth additives can effectively improve the mechanical property and engineering performance of ceramic die materials. Thus, it will have further perspectives of wider application. More attention should be paid in the future to the toughening and strengthening of the ceramic die materials, the adding forms and kinds of rare earth elements and acting mechanisms of rare earth additives in ceramic die materials.
文摘The influences of the thermomechanical processing, including the solidification conditions, the cold deformation and the intermediate annealing treatment, on the structure and properties of the Cu-10Ag alloy in situ composite were studied in this paper. The cast structure and the structural changes in the cold deformation and intermediate annealing process were observed. The properties including the ultimate tensile strength (UTS) and the electrical conductivity were determined. A two-stage strain strengthening effect for the Cu-10Ag alloy in situ filamentary composite was observed. The factors influencing the UTS and conductivity were discussed. The solidification conditions in the range of 10-1000 K/s cooling rates and the intermediate heat treatment showed obviously influence on the structure and properties on the Cu-10Ag alloy in situ filamentary composite. The typical properties of the Cu-Ag alloy in situ filamentary composites through thermomechanical processing were reported.
基金This work was supported by International Science and Technology Cooperation Project of Guangdong Province(Grant No.2022A0505050054)Innovation and Technology Fund(ITF)(Grant No.ITP/021/19AP)National Natural Science Foundation of China(Grant No.51905112).
文摘Refill friction stir spot welding(RFSSW)provides a novel method to join similar and/or dissimilar metallic materials without a key-hole in the center of the joint.Having the key-hole free characterization,the similar/dissimilar RFSSW joint exhibits remarkable and endurable characteristics,including high shear strength,long fatigue life,and strong corrosion resistance.In the meanwhile,as the key-hole free joint has different microstructures compared with conventional friction stir spot welding,thus the RFSSW joint shall possess different shear and fatigue fracture mechanisms,which needs further investigation.To explore the underlying failure mechanism,the similar/dissimilar metallic material joining parameters and pre-treatment,mechanical properties,as well as fracture mechanisms under this novel technology will be discussed.In details,the welding tool design,welding parameters setting,and the influence of processing on the lap shear and fatigue properties,as well as the corrosion resistance will be mainly discussed.Moreover,the roadmap of RFFSW is also discussed.
基金Projects(5020400750574046) supported by the National Natural Science Foundation of ChinaProject(2005PY01-33) supported by the Natural Foundation of Yunnan Province, China
文摘Ce0.8Ca0.2O1.8 (CDC82) anode material was prepared by glycine-nitrate process(GNP). Thermogravimetric(TG) analysis and differential scanning calorimetric(DSC) methods were adopted to characterize the reaction process of CDC82 material. X-ray diffractometry(XRD), scanning electron microcopy(SEM), direct current four probe (four-probe DC) and temperature process reduce(TPR) techniques were adopted to characterize the properties of CDC82 material. After the precursor was sintered at 750 ℃ for 4 h, CDC82 material with pure-fluorite structure and nanometer size was obtained. The total conductivity of CDC82 changes little with temperature in air at 50?850 ℃ , and the maximum value is 0.04 S/cm at 750 ℃ . The total conductivity wholly becomes larger when the atmosphere changes from air to hydrogen, which greatly increases with increasing temperature and reaches the maximum value of 1.09 S/cm at 850 ℃. Some impurities such as CeMg and La2O3 exist after the mixture of CDC82 anode and La1?xSrxGa1?yMgyO3?δ (LSGM) electrolyte material is sintered at 1 200 ℃ for 15 h. The CDC82 material as anode material has excellent catalytic property for hydrogen and methane.
基金Project(50131040) supported by the National Natural Science Foundation of China
文摘The effects of the alloy preparation methods, including the conventional casting, annealing and melt-spinning, on the crystallographic and electrochemical properties of the Co-free LaNi4.95Sn0.3 alloy samples were investigated. The results reveal that the as-cast alloy consists of a main phase of CaCu5-type structure and a little second phase (Sn) with noticeable composition segregation and rather poor cycling stability (S200=40.1%). While the annealed and melt-spun alloys are of single CaCu5-type structure phase with a more homogeneous composition and lower cell volume expansion rate (?V/V) on hydriding, and a dramatically improved cyclic stability (S200=73.6%?76.2%), although their activation rate, initial capacity and high-rate dischargeability are lowered somewhat. It is found that the decrease in both the electrocatalytic activity and the hydrogen diffusion rate of the annealed and melt-spun alloys is the main cause for their relatively lower high-rate dischargeability, and the improved cycling stability is due to their lower volume expansion on hydriding and more uniform composition.
文摘TiC particle reinforced 420 stainless steel matrix composites were fabricated, and the microstructure, tensile properties and wear resistance of the composites were studied. The experimental results indicate that the distribution of TiC particles with size of 5 to 10 μm in diameter is uniform if the volume fraction of TiC is lower than 6%. However, slight agglomeration can be observed when the TiC content exceeds 6%. With the increase of TiC content the tensile and yield strength of the composites prepared increases and reaches the maximum when the volume fraction of TiC increases to 5%. Further increase of TiC content causes reductions of yield and tensile strength. The ductility of the composites shows a monotone decrease with the increase of TiC addition. The introduction of TiC into 420 stainless steel results in significant improvement on wear resistance, which reaches a steady level when the volume fraction of TiC increases to 11% and does not show obvious variation if the TiC content is further increased.
基金supported by the Pre-research Foundation of CPLA General Equipment Department (NO.9140A××××6401)
文摘W-type barium ferrites doped with Gd^3+,Ba1-xGdx(Zn0.3Co0.7)2Fe16O27(x = 0,0.05,0.10,0.15,0.20),were prepared by a sol-gel method.The effects of Gd^3+ substitution on their microstructure,electromagnetic properties and microwave absorptive behavior were analyzed.The XRD patterns showed the single phase of W-type barium ferrite when x ≤ 0.15.Microwave electromagnetic properties of samples were studied at the frequency range from 2 GHz to 18 GHz using a network analyzer(Agilent 8722ET).The complex permittivity ε(ε',ε'') increased gradually when x ≤ 0.10,but it decreased as x = 0.15.The real permeability(μ') decreased with the increase of Gd^3+ content,while the imaginary permeability(μ'') increased when x ≤ 0.10.All these reasons were discussed using the electromagnetic theory.Furthermore,the ferrite-epoxy compound coating materials with 80 wt.% of Ba0.9Gd0.1(Zn0.3Co0.7)2Fe16O27 were prepared to measure the microwave absorbing properties.The maximum of reflection loss(RL) reached about-27 dB and RL was below-10 dB in the frequency range of 8-18 GHz when the thickness was 1.92 mm.
基金Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20130075110006)Education Innovation Project of Shanghai,China(No.12ZZ069)Natural Science Foundation of Shanghai,China(No.11ZR1400400)
文摘Sludge,solid waste of sewage treatment plants,poses a threat as a secondary pollution if it is not handled properly.In this study,artifical ceramsite filter material(ACFM)for water treatment,was obtained from sludge by high-temperature sintering process,and then it’s physical properties,leaching toxicity and sintering mechanisms were investigated.The results showed that the preferred conditions for the preparation of ACFM were that the mass ratio of sludge,river sediment and fly ash was 5∶4∶1,preheated at 400℃for 20 min and sintered at 1 150℃for 5 min.After the optimal sintering conditions treatment,the physical properties of the rate of breaking and wear,solubility in hydrochloric acid,silt carrying capacity,void fraction and Brunauer-Emmett-Teller(BET)specific surface area of ACFM were 0.2%,0.01%,0.2%,71.1%and 0.75×104cm2/g,respectively.The results confirmed that the ACFM’s physical properties were totally aligned to the requirements of China’s industry standard(CJ/T 299—2008).The leaching toxicity results indicated that the leaching contents of heavy metals,such as Cr,Zn and Cu,were much lower than the thresholds of China’s national standards(GB 5085.3—2007 and GB 8978—1996).
文摘The physical modelanditsequivalentcircuitoftestapparatusissetup by meansofimpedanceanalysis method. The magnetostriction coefficient, magnetomechanicalcoupling coefficient,frequency and anti- frequency of TbxDy1 - xFe2 - z(0 27 ≤x ≤0 3 ,0 ≤z ≤0 1) rod are measured. Somecoupling problems with mechanicalstress and electromagnetic field such as flux leakage in magnetic path are discussed. The comparing calculated with tested resultsshowsthe accuracyof measurementand thesimplification of model.
文摘The electrochemical properties of spinel compound LiNi0.5Mn1.2Ti0.3O4 were investigated in this study.The chemicals LiAc·2H2O,Mn(Ac)2·2H2O,Ni(Ac)2·4H2O,and Ti(OCH3)4 were used to synthesize LiNi0.5Mn1.2Ti0.3O4 by a simple sol-gel method.The discharge capacity of the sample reached 134 mAh/g at a current rate of 0.1C.The first and fifth cycle voltammogram almost overlapped,which showed that the prepared sample LiNi0.5Mn1.2Ti0.3O4 had excellent good cycle performance.There were two oxidation peaks at 4.21 V and 4.86 V,and two reduction peaks at 4.55 V and 3.88 V in the cycle voltammogram,respectively.By electrochemical impedance spectroscopy and its fitted result,the lithium ion diffusion coefficient was measured to be approximately 7.76 × 10?11 cm2/s.
文摘PSN-PZN-PZT + x wt. %Cr2O3, X = 0.0-0-9, were prepared by conventional mixed oxide techniques at sintering temperatures of 1220 degrees C-1300 degrees C for 2 h. The effect of sintering temperature on the microstructure and the piezoelectric properties was investigated by XRD, SEM, and other conventional measurement. The result indicated that with temperature increasing, the valence of Cr ion from Cr5+ or Cr6+ changes into C3+, and the piezoelectric properties turn hard. With increasing Cr2O3 content, the amount of rhombohedral phases increases and the morphotropic boundary phase is correspondingly shifts to rhombohedral phase. A uniform microstructure and excellent comprehensive properties were obtained at 1240 degrees C as the amount of Cr2O3 is 0.5 wt.%.
文摘The main research purpose of this paper is to study the mechanical properties of the sand gravel packing of the retaining wall under the creep condition of reinforced materials, in order to figure it out, Indoor physical experiments were carried out.
基金the National Basic Research Program (973) of China (No. 2006CB705400)the National Natural Science Foundation of China (No. 50575200)
文摘Mathematical models are been proposed to simulate the thermal and metallurgical behaviors of the strip occtLrring on the run-out table (ROT) in a hot strip mill. A variational method is utilized for the discretization of the governing transient conduction-convection equation, with heat transfer coefficients adaptively determined by the actual mill data. To consider the thermal effect of phase transformation during cooling, a constitutive equation for describing austenite decomposition kinetics of steel in air and water cooling zones is coupled with the heat transfer model. As the basic required inputs in the numerical simulations, thermal material properties are experimentally measured for three carbon steels and the least squares method is used to statistically derive regression models for the properties, including specific heat and thermal conductivity. The numerical simulation and experimental results show that the setup accuracy of the temperature prediction system of ROT is effectively improved.
基金Islamic Azad University,the Ahwaz Branches for financial support of this research work
文摘The aim of present work is fabrication of Al/Al2Cu in situ nanocomposite by friction stir processing(FSP)as well asinvestigation of FPS parameters such as rotational speed,travel speed,number of FSP passes,and pin profile on the microstructure,chemical reaction,and microhardness of Al based nanocomposite.The Al2Cu particles were formed rapidly due to mechanicallyactivated effect of FSP as well as high heat generation due to Al?Cu exothermic reaction.The microstructure of the nanocompositesconsisted of a finer grained aluminium matrix(~15μm),unreacted Cu nanoparticles(~40nm),and reinforcement nanoparticles ofAl2Cu.Irregular morphology of Al2Cu is attributed to the local melting during FSP.Pin diameter has a higher effect on themicrostructure and hardness values.The hardness measurements exhibited enhancement by57%compared with the base metal.
基金Project(50204007) supported by the National Natural Science Foundation of ChinaProject(2005PY01-33) supported by the Talent Foundation of Yunnan Province, China
文摘La1-xSrxCr1-yMnyO3-δ(LSCM) anode materials were synthesized by glycine nitrate process(GNP). Thermo-gravimetric analysis(TGA) and differential scanning calorimetric(DSC) methods were adopted to investigate the reaction process of LSCM anode materials. The oxides prepared were characterized via X-ray diffraction(XRD),scanning electron microscope and energy dispersive spectroscopy(SEM-EDS),direct current four-electrode and temperature process reduction(TPR) techniques. XRD patterns indicate that perovskite phase created after the precursor was sintered at 1 000 ℃ for 5 h,and single perovskite-type oxides formed after the precursor were sintered at 1 200 ℃ for 5 h. The powders are micrometer size after sintering at 1 000 ℃ and 1 200 ℃,respectively. The conductivities of LSCM samples increase linearly with increasing the temperature from 250 ℃ to 850 ℃ in air and the maximum value is 32 S/cm for La0.7Sr0.3Cr0.5Mn0.5O3-δ. But it is lower about two orders of magnitude in pure hydrogen or methane than that of the same sample in the air. TPR result indicates that LSCM offers excellently catalytic performance.
基金Project(B0614) supported by the Natural Science Foundation of University of Jinan, ChinaProject(20030422105) supported by the Specialized Research Fund for Doctoral Program of Higher Education, China+1 种基金Project(Y2004F08) supported by the Natural Science Foundation of Shandong Province, ChinaProject(NCET-04-0622) supported by the Program for New Century Excellent Talents in University, China.
文摘The suitable test equipment for wire-drawing was designed. Wire-drawing tests were carried on with this equipment for TiC/Al2O3 ceramic wire-drawing die. Effect of lubrication medium and drawing velocity on the drawing force was investigated. The wear mechanisms of the ceramic drawing dies were investigated. Worn bore surfaces of the ceramic drawing dies were examined by scanning electron microscopy. The results show that lubricant media have great influence on the drawing force. The drawing force is the smallest when a grease lubricant is used. But alteration of drawing velocity has scarcely any influence on the drawing force. Detailed observations and analyses of the die wear surface reveal that the most common failure of the ceramic drawing die is the wear in the invariable zone and bearing zone owing to the greater press stresses. Abrasive and adhesive wear are found to be the predominant wear mechanisms for ceramic drawing die.
基金supported by the National Natural Science Foundation of China (No.12202190)Outstanding Postdoctoral Program in Jiangsu Province (No.2022ZB233)Research Start-up Funding from Nanjing University of Aeronautics and Astronautics (No.90YAH21131)。