Rational design of ionic liquids(ILs),which is highly dependent on the accuracy of the model used,has always been crucial for CO_(2)separation from flue gas.In this study,a support vector machine(SVM)model which is a ...Rational design of ionic liquids(ILs),which is highly dependent on the accuracy of the model used,has always been crucial for CO_(2)separation from flue gas.In this study,a support vector machine(SVM)model which is a machine learning approach is established,so as to improve the prediction accuracy and range of IL melting points.Based on IL melting points data with 600 training data and 168 testing data,the estimated average absolute relative deviations(AARD)and squared correlation coefficients(R^(2))are 3.11%,0.8820 and 5.12%,0.8542 for the training set and testing set of the SVM model,respectively.Then,through the melting points model and other rational design processes including conductor-like screening model for real solvents(COSMO-RS)calculation and physical property constraints,cyano-based ILs are obtained,in which tetracyanoborate[TCB]-is often ruled out due to incorrect estimation of melting points model in the literature.Subsequently,by means of process simulation using Aspen Plus,optimal IL are compared with excellent IL reported in the literature.Finally,1-ethyl-3-methylimidazolium tricyanomethanide[EMIM][TCM]is selected as a most suitable solvent for CO_(2)separation from flue gas,the process of which leads to 12.9%savings on total annualized cost compared to that of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide[EMIM][Tf_(2)N].展开更多
A process-oriented knowledge-sharing platform is studied to improve knowledge sharing and project management of chemical engineering design enterprises. First, problems and characteristics of knowledge sharing in mult...A process-oriented knowledge-sharing platform is studied to improve knowledge sharing and project management of chemical engineering design enterprises. First, problems and characteristics of knowledge sharing in multi-projects of chemical engineering design are analyzed. Then based on theories of project management, process management, and knowledge management, a process-oriented knowledge-sharing platform is proposed. The platform has three characteristics: knowledge is divided into professional knowledge and project management knowledge; knowledge sharing is integrated with the project process, which makes knowledge sharing a necessary part of the project process and ensures the quantity of knowledge shared; the platform provides quantitative measurements of incentive mechanisms for knowledge providers and users which ensures the quality of knowledge shared. This knowledge-sharing platform uses two knowledge management tools, a knowledge map and a knowledge base, to support the platform.展开更多
Substantially lightweight brake discs with high wear resistance are highly desirable in the automotive industry.This paper presents an investigation of the precision-engineering design and development of automotive br...Substantially lightweight brake discs with high wear resistance are highly desirable in the automotive industry.This paper presents an investigation of the precision-engineering design and development of automotive brake discs using nonhomogeneous Al/SiC metal-matrixcomposite materials.The design and development are based on modeling and analysis following stringent precision-engineering principles,i.e.,brake-disc systems that operate repeatably and stably over time as enabled by precision-engineering design.The design and development are further supported by tribological experimental testing and finite-element simulations.The results show the industrial feasibility of the innovative design approach and the application merits of using advanced metal-matrix-composite materials for next-generation automotive and electric vehicles.展开更多
Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the e...Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the explicit code LS-DYNA. The manufacturing process for the instrument panel frame consists of tube pre-be nding and final hydroforming. To accomplish hydroforming process design successf ully, a thorough investigation of proper combination of process parameters such as internal hydraulic pressure and axial feeding is carried out by finite element simulation to predict the tube wall thickness and shape. An optimized process parameter combination is obtained and verified by the instrument panel frame hyd roforming experiment. The experiment shows that designed process parameters can be used in real production through FEA simulation, but tubular thinned amplitu de by FEA is less than that with the experiment.展开更多
As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas e...As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas es. A key component of an integrated environment is the use of computational eng ineering to assist and support solutions for complex design. Computer methods fo r structural, flow and thermal analysis are well developed and have been used in design for many years. Many software packages are now available which provi de an advanced capability. However, they are not designed for modelling of powde r forming processes. This paper describes the powder compaction software (PCS_SU T), which is designed for pre- and post-processing for computational simulatio n of the process compaction of powder. In the PCS_SUT software, the adaptive analysis of transient metal powder forming process is simulated by the finite element method based on deformation theories . The error estimates and adaptive remeshing schemes are applied for updated co -ordinate analysis. A generalized Newmark scheme is used for the time domain di scretization and the final nonlinear equations are solved by a Newton-Raphson p rocedure. An incremental elasto-plastic material model is used to simulate the compaction process. To describe the constitutive model of nonlinear behaviour of powder materials, a combination of Mohr-Coulomb and elliptical yield cap model is applied. This model reflects the yielding, frictional and densification char acteristics of powder along with strain and geometrical hardening which occurs d uring the compaction process. A hardening rule is used to define the dependence of the yield surface on the degree of plastic straining. A plasticity theory for friction is employed in the treatment of the powder-tooling interface. The inv olvement of two different materials, which have contact and relative movement in relation to each other, must be considered. A special formulation for friction modelling is coupled with a material formulation. The interface behaviour betwee n the die and the powder is modelled by using an interface element mesh. In the present paper, we have demonstrated pre- and post-processor finite elem ent software, written in Visual Basic, to generate the graphical model and visua lly display the computed results. The software consist of three main part: · Pre-processor: It is used to create the model, generate an app ropriate finite element grid, apply the appropriate boundary conditions, and vie w the total model. The geometric model can be used to associate the mesh with th e physical attributes such as element properties, material properties, or loads and boundary conditions. · Analysis: It can deal with two-dimensional and axi-symmetric applications for linear and non-linear behaviour of material in static and dyna mic analyses. Both triangular and quadrilateral elements are available in the e lement library, including 3-noded, 6-noded and 7-noded (T6B1) triangles and 4 -noded, 8-noded and 9-noded quadrilaterals. The direct implicit algorithm bas ed on the generalized Newmark scheme is used for the time integration and an aut omatic time step control facility is provided. For non-linear iteration, choice s among fully or modified Newton-Raphson method and quasi-Newton method, using the initial stiffness method, Davidon inverse method or BFGS inverse method, ar e possible. · Post-processor: It provides visualization of the computed resu lts, when the finite element model and analysis have been completed. Post-proce ssing is vital to allow the appropriate interpretation of the completed results of the finite element analysis. It provides the visual means to interpret the va st amounts of computed results generated. Finally, the powder behaviour during the compaction of a multi-level component is numerically simulated by the PCS_SUT software, as shown in Fig.1. The predict ive compaction forces at different displacements are computed and compared with the available experimental展开更多
Building owners,designers and constructors are seeing a rapid increase in the number of sustainably designed high performance buildings.These buildings provide numerous benefits to the owners and occupants to include ...Building owners,designers and constructors are seeing a rapid increase in the number of sustainably designed high performance buildings.These buildings provide numerous benefits to the owners and occupants to include improved indoor air quality,energy efficiency,and environmental site standards;and ultimately enhance productivity for the building occupants.As the demand increases for higher building energy efficiency and environmental standards,application of a set of process models will support consistency and optimization during the design process.Systems engineering process models have proven effective in taking an integrated and comprehensive view of a system while allowing for clear stakeholder engagement,requirements definition,life cycle analysis,technology insertion,validation and verification.This paper overlays systems engineering on the sustainable design process by providing a framework for application of the Waterfall,Vee,and Spiral process models to high performance buildings.Each process model is mapped to the sustainable design process and is evaluated for its applicability to projects and building types.Adaptations of the models are provided as Green Building Process Models.展开更多
The layout and assembly of flexible cables play important roles in the design and development of complex electromechanical products.The rationality of cable layout design and the reliability of cable assembly greatly ...The layout and assembly of flexible cables play important roles in the design and development of complex electromechanical products.The rationality of cable layout design and the reliability of cable assembly greatly affect product quality.In this paper,we review the methods of cable layout design,cable assembly process planning,and cable assembly simulation.We first review research on flexible cable layout design(both interactive and automatic).Then,research on the cable assembly process planning,including cable assembly path and manipulation planning,is reviewed.Finally,cable assembly simulation is introduced,which includes general cable information,cable collision detection data,and cable assembly process modeling.Current problems and future research directions are summarized at the end of the paper.展开更多
The use of aluminum, particularly for engine blocks, has grown considerably in the past ten years, and continues to rise in the automotive industry. In order to enhance the quality and engineering functionality of die...The use of aluminum, particularly for engine blocks, has grown considerably in the past ten years, and continues to rise in the automotive industry. In order to enhance the quality and engineering functionality of die cast engine blocks, die design and processes have to be optimized. In this study, a computer simulation software, MAGMAsoft, as an advanced tool for optimizing die design and casting process, was employed to virtually visualize cavity filling and patterns of a V6 engine block. The original die design and process was simulated first to establish a baseline. A reality check was used to verify the predicted results. Then, the die modification with a different runner system was made by using a CAD software, Unigraphics (UG). The simulation on combinations of the modified die design and revised process was performed to examine the effect of die modification and process change on flow filling of V6 engine blocks. The simulated prediction indicates that the enhancement of cavity filling due to the die and process modification minimizes the occurrence of defects during casting, and consequently improves the quality of blocks. The results of mechanical testing show a significant increase in fatigue strengths, and a moderately improvement on tensile properties for the blocks die cast with the new die design and process in comparison with those produced by the original ones.展开更多
The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation...The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time展开更多
The content of this subject research is to conduct optimization for engine mounting system, and through optimization, it can make the vibration between engine and vehicle body achieve a minimum, using Adams software f...The content of this subject research is to conduct optimization for engine mounting system, and through optimization, it can make the vibration between engine and vehicle body achieve a minimum, using Adams software for simulation. It studies the isolation vibration of the engine mounting system and conducts goal optimization for fixed frequency. This paper uses two methods for optimization. One is to use the rational allocation of fixed frequency to optimize the fixed frequency, and the other is to use energy decoupling method to optimize the fixed frequency. It uses Adams software for simulation of the optimized fixed frequency and conducts comparison of simulated results. The simulated results show that the optimized energy distribution situation almost achieves 90%. Compared with original data, decoupling degree also has a very great improvement, illustrating that the optimized data has greater effect for the isolated vibration of engine, in order to further verify the feasibility of optimization design method.展开更多
In this study, the engine suspension system was optimized for making the vibration between engine and car body minimized, and also the optimization was simulated using software Adams. The purpose of this study was to ...In this study, the engine suspension system was optimized for making the vibration between engine and car body minimized, and also the optimization was simulated using software Adams. The purpose of this study was to research the vibration isolation of the engine mounting system and implement multi-objective optimization for the intrinsic frequency. In this paper, the optimization was implemented in two ways: (1) the intrinsic frequency was optimized by reasonably allocating it: (2) the intrinsic frequency was optimized using energy decoupling. The optimized intrinsic frequencies were simulated using software Adams and then the simulation results were compared. The simulation results showed that the optimized energy distribution was almost up to 90% and the decoupling degree was greatly improved by comparing the initial data, proving the optimized data played a geater effect on engine vibration isolation and further verifying the feasibility of optimization design method.展开更多
When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Cur...When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently, a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.展开更多
INTRODUCTIONA Current green building practice has been largely advanced by an integrated design process.This integrated design process involves multiple disciplines,such as archi-tecture,civil,mechanical,and electrica...INTRODUCTIONA Current green building practice has been largely advanced by an integrated design process.This integrated design process involves multiple disciplines,such as archi-tecture,civil,mechanical,and electrical engineering.The design method heavily relies on utilizing building performance simulation to illustrate how design param-eters affect the energy consumption and quality of the indoor environment before actual design decisions are made(Anderson,2014).The architectural design tools in the integrated design process supersede traditional geometrical exploration instruments,such as Sketchup,Revit,ArchiCad,and Rhino(Negendahl,2015).More building performance simulating tools,such as Ecotect,Computational Fluid Dynamics(CFD),Radiance,and EnergyPlus,have been developed to help architects measure building performance(e.g.,natural ventilation,daylighting,solar radiation,and energy uses)in the design process and attain green building standards such as Leadership in Energy and Environmental Design(LEED).The information presented by these tools guide architects at a certain level in achieving green building goals.展开更多
Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing...Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing method and the snapper technique made the valves move smoothly. The flow structure and pattern in a complete engine cycle were described in detail. Tumble ratios around the x-axis and y-axis were analyzed. Comparison of computed pressure with experimental pressure under motored condition revealed that the simulation had high calculation precision; CFD simulation can be regarded as an im-portant tool for resolving the complex aerodynamic behavior in motorcycle engines.展开更多
The present study demonstrates the potential of the simulation based on-line synthesis, design and optimization strategy for pressure swing adsorption (PSA) processes developed in our earlier study by implementing o...The present study demonstrates the potential of the simulation based on-line synthesis, design and optimization strategy for pressure swing adsorption (PSA) processes developed in our earlier study by implementing on an actual two-bed unit. The unit is very flexible and allows process synthesis from the PSA cycle configuration point of view. The model parameters are regressed and updated using live experimental data. The on-line monitoring and controlling of the operating parameters and operating configurations are done by multi-loop processor programmable logic controller. Separation of air into nitrogen free oxygen as raffinate stream and enriched nitrogen as extract stream using 5A zeolite as adsorbent has been chosen as a specific system for implementing the strategy. The philosophy of the typical optimization and process synthesis exercise implemented on the unit is described. The results show the successful implementation of the developed strategy on the two-bed O2-PSA unit and the application of this general approach to commercial PSA processes.展开更多
The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our prev...The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our previous work,a novel industrial p-xylene oxidation reactor model using the free radical mechanism based kinetics has been developed.However,the disturbances such as production rate change,feed composition variability and reactor temperature changes widely exist in the industry process.In this paper,dynamic simulation of the PX oxidation reactor was designed by Aspen Dynamics and used to develop an effective plantwide control structure,which was capable of effectively handling the disturbances in the load and the temperature of the reactor.Step responses of the control structure to the disturbances were shown and served as the foundation of the smooth operation and advanced control strategy of this process in our future work.展开更多
This paper treats multi-objective problem for manufacturing process design. A purpose of the process design is to decide combinations of work elements assigned to different work centers. Multiple work elements are ord...This paper treats multi-objective problem for manufacturing process design. A purpose of the process design is to decide combinations of work elements assigned to different work centers. Multiple work elements are ordinarily assigned to each center. Here, infeasible solutions are easily generated by precedence relationship of work elements in process design. The number of infeasible solutions generated is ordinarily larger than that of feasible solutions generated in the process. Therefore, feasible and infeasible solutions are located in any neighborhood in solution space. It is difficult to seek high quality Pareto solutions in this problem by using conventional multi-objective evolutional algorithms. We consider that the problem includes difficulty to seek high quality solutions by the following characteristics: (1) Since infeasible solutions are resemble to good feasible solutions, many infeasible solutions which have good values of objective functions are easily sought in the search process, (2) Infeasible solutions are useful to select new variable conditions generating good feasible solutions in search process. In this study, a multi-objective genetic algorithm including local search is proposed using these characteristics. Maximum value of average operation times and maximum value of dispersion of operation time in all work centers are used as objective functions to promote productivity. The optimal weighted coefficient is introduced to control the ratio of feasible solutions to all solutions selected in crossover and selection process in the algorithm. This paper shows the effectiveness of the proposed algorithm on simple model.展开更多
Virtual simulation teaching of architecture courses is a teaching mode based on the deep integration of information technology and design class in intelligent environment.Under the background of new engineering,relyin...Virtual simulation teaching of architecture courses is a teaching mode based on the deep integration of information technology and design class in intelligent environment.Under the background of new engineering,relying on a national virtual simulation laboratory,the exploration of green low-carbon simulation in architecture courses is of great importance for improving the dimension of scientific thinking of architecture undergraduates.In this study,based on the background of architecture curriculum construction,the practical content of the teaching reform of architecture courses based on virtual simulation was expounded from three dimensions of reshaping teaching objectives,updating teaching content and improving teaching evaluation.The practical paths of teaching reform of architecture courses were put forward under virtual simulation experiment teaching,namely building teaching teams,strengthening pilot courses,reforming teaching methods,optimizing classroom teaching content and evaluation methods,constructing practical classroom teaching form in line with the learning situation of architecture courses,building a smart learning platform,and closely combining resource construction,application and curriculum content.This study has important practical significance for optimizing and improving the teaching system of professional courses,adapting to the needs of the industry,enhancing competitiveness,and promoting the construction of first-class architecture courses.展开更多
In order to study the major performance indicators of the twin-rotor piston engine(TRPE), Matlab/simulink was used to simulate the mathematical models of its thermodynamic processes. With consideration of the characte...In order to study the major performance indicators of the twin-rotor piston engine(TRPE), Matlab/simulink was used to simulate the mathematical models of its thermodynamic processes. With consideration of the characteristics of the working processes in the TRPE, corresponding differential equations were established and then simplified by period features of the TRPE. Finally, the major boundary conditions were figured out. The changing trends of mass, pressure and temperature of working fuel in the working chamber during a complete engine cycle were presented. The simulation results are consistent with the trends of an actual working cycle in the TRPE, which indicates that the method of simulation is feasible. As the pressure in the working chamber is calculated, all the performance parameters of the TRPE can be obtained. The major performance indicators, such as the indicated mean effective pressure, power to weight ratio and the volume power, are also acquired. Compared with three different types of conventional engines, the TRPE has a bigger utilization ratio of cylinder volume, a higher power to weight ratio and a more compact structure. This indicates that TRPE is superior to conventional engines.展开更多
基金the financial support by the National Natural Science Foundation of China(Project No.21878054)the Natural Science Foundation of Fujian Province of China(2020J01515)
文摘Rational design of ionic liquids(ILs),which is highly dependent on the accuracy of the model used,has always been crucial for CO_(2)separation from flue gas.In this study,a support vector machine(SVM)model which is a machine learning approach is established,so as to improve the prediction accuracy and range of IL melting points.Based on IL melting points data with 600 training data and 168 testing data,the estimated average absolute relative deviations(AARD)and squared correlation coefficients(R^(2))are 3.11%,0.8820 and 5.12%,0.8542 for the training set and testing set of the SVM model,respectively.Then,through the melting points model and other rational design processes including conductor-like screening model for real solvents(COSMO-RS)calculation and physical property constraints,cyano-based ILs are obtained,in which tetracyanoborate[TCB]-is often ruled out due to incorrect estimation of melting points model in the literature.Subsequently,by means of process simulation using Aspen Plus,optimal IL are compared with excellent IL reported in the literature.Finally,1-ethyl-3-methylimidazolium tricyanomethanide[EMIM][TCM]is selected as a most suitable solvent for CO_(2)separation from flue gas,the process of which leads to 12.9%savings on total annualized cost compared to that of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide[EMIM][Tf_(2)N].
基金The National Natural Science Foundation of China (No.70501030,70621001)Natural Science Foundation of Beijing (No.9073020)
文摘A process-oriented knowledge-sharing platform is studied to improve knowledge sharing and project management of chemical engineering design enterprises. First, problems and characteristics of knowledge sharing in multi-projects of chemical engineering design are analyzed. Then based on theories of project management, process management, and knowledge management, a process-oriented knowledge-sharing platform is proposed. The platform has three characteristics: knowledge is divided into professional knowledge and project management knowledge; knowledge sharing is integrated with the project process, which makes knowledge sharing a necessary part of the project process and ensures the quantity of knowledge shared; the platform provides quantitative measurements of incentive mechanisms for knowledge providers and users which ensures the quality of knowledge shared. This knowledge-sharing platform uses two knowledge management tools, a knowledge map and a knowledge base, to support the platform.
文摘Substantially lightweight brake discs with high wear resistance are highly desirable in the automotive industry.This paper presents an investigation of the precision-engineering design and development of automotive brake discs using nonhomogeneous Al/SiC metal-matrixcomposite materials.The design and development are based on modeling and analysis following stringent precision-engineering principles,i.e.,brake-disc systems that operate repeatably and stably over time as enabled by precision-engineering design.The design and development are further supported by tribological experimental testing and finite-element simulations.The results show the industrial feasibility of the innovative design approach and the application merits of using advanced metal-matrix-composite materials for next-generation automotive and electric vehicles.
文摘Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the explicit code LS-DYNA. The manufacturing process for the instrument panel frame consists of tube pre-be nding and final hydroforming. To accomplish hydroforming process design successf ully, a thorough investigation of proper combination of process parameters such as internal hydraulic pressure and axial feeding is carried out by finite element simulation to predict the tube wall thickness and shape. An optimized process parameter combination is obtained and verified by the instrument panel frame hyd roforming experiment. The experiment shows that designed process parameters can be used in real production through FEA simulation, but tubular thinned amplitu de by FEA is less than that with the experiment.
文摘As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas es. A key component of an integrated environment is the use of computational eng ineering to assist and support solutions for complex design. Computer methods fo r structural, flow and thermal analysis are well developed and have been used in design for many years. Many software packages are now available which provi de an advanced capability. However, they are not designed for modelling of powde r forming processes. This paper describes the powder compaction software (PCS_SU T), which is designed for pre- and post-processing for computational simulatio n of the process compaction of powder. In the PCS_SUT software, the adaptive analysis of transient metal powder forming process is simulated by the finite element method based on deformation theories . The error estimates and adaptive remeshing schemes are applied for updated co -ordinate analysis. A generalized Newmark scheme is used for the time domain di scretization and the final nonlinear equations are solved by a Newton-Raphson p rocedure. An incremental elasto-plastic material model is used to simulate the compaction process. To describe the constitutive model of nonlinear behaviour of powder materials, a combination of Mohr-Coulomb and elliptical yield cap model is applied. This model reflects the yielding, frictional and densification char acteristics of powder along with strain and geometrical hardening which occurs d uring the compaction process. A hardening rule is used to define the dependence of the yield surface on the degree of plastic straining. A plasticity theory for friction is employed in the treatment of the powder-tooling interface. The inv olvement of two different materials, which have contact and relative movement in relation to each other, must be considered. A special formulation for friction modelling is coupled with a material formulation. The interface behaviour betwee n the die and the powder is modelled by using an interface element mesh. In the present paper, we have demonstrated pre- and post-processor finite elem ent software, written in Visual Basic, to generate the graphical model and visua lly display the computed results. The software consist of three main part: · Pre-processor: It is used to create the model, generate an app ropriate finite element grid, apply the appropriate boundary conditions, and vie w the total model. The geometric model can be used to associate the mesh with th e physical attributes such as element properties, material properties, or loads and boundary conditions. · Analysis: It can deal with two-dimensional and axi-symmetric applications for linear and non-linear behaviour of material in static and dyna mic analyses. Both triangular and quadrilateral elements are available in the e lement library, including 3-noded, 6-noded and 7-noded (T6B1) triangles and 4 -noded, 8-noded and 9-noded quadrilaterals. The direct implicit algorithm bas ed on the generalized Newmark scheme is used for the time integration and an aut omatic time step control facility is provided. For non-linear iteration, choice s among fully or modified Newton-Raphson method and quasi-Newton method, using the initial stiffness method, Davidon inverse method or BFGS inverse method, ar e possible. · Post-processor: It provides visualization of the computed resu lts, when the finite element model and analysis have been completed. Post-proce ssing is vital to allow the appropriate interpretation of the completed results of the finite element analysis. It provides the visual means to interpret the va st amounts of computed results generated. Finally, the powder behaviour during the compaction of a multi-level component is numerically simulated by the PCS_SUT software, as shown in Fig.1. The predict ive compaction forces at different displacements are computed and compared with the available experimental
文摘Building owners,designers and constructors are seeing a rapid increase in the number of sustainably designed high performance buildings.These buildings provide numerous benefits to the owners and occupants to include improved indoor air quality,energy efficiency,and environmental site standards;and ultimately enhance productivity for the building occupants.As the demand increases for higher building energy efficiency and environmental standards,application of a set of process models will support consistency and optimization during the design process.Systems engineering process models have proven effective in taking an integrated and comprehensive view of a system while allowing for clear stakeholder engagement,requirements definition,life cycle analysis,technology insertion,validation and verification.This paper overlays systems engineering on the sustainable design process by providing a framework for application of the Waterfall,Vee,and Spiral process models to high performance buildings.Each process model is mapped to the sustainable design process and is evaluated for its applicability to projects and building types.Adaptations of the models are provided as Green Building Process Models.
基金the National Defense Fundamental Research Foundation of China(JCKY2017204B502,JCKY2016204A502)and National Natural Science Foundation of China(51935003).
文摘The layout and assembly of flexible cables play important roles in the design and development of complex electromechanical products.The rationality of cable layout design and the reliability of cable assembly greatly affect product quality.In this paper,we review the methods of cable layout design,cable assembly process planning,and cable assembly simulation.We first review research on flexible cable layout design(both interactive and automatic).Then,research on the cable assembly process planning,including cable assembly path and manipulation planning,is reviewed.Finally,cable assembly simulation is introduced,which includes general cable information,cable collision detection data,and cable assembly process modeling.Current problems and future research directions are summarized at the end of the paper.
文摘The use of aluminum, particularly for engine blocks, has grown considerably in the past ten years, and continues to rise in the automotive industry. In order to enhance the quality and engineering functionality of die cast engine blocks, die design and processes have to be optimized. In this study, a computer simulation software, MAGMAsoft, as an advanced tool for optimizing die design and casting process, was employed to virtually visualize cavity filling and patterns of a V6 engine block. The original die design and process was simulated first to establish a baseline. A reality check was used to verify the predicted results. Then, the die modification with a different runner system was made by using a CAD software, Unigraphics (UG). The simulation on combinations of the modified die design and revised process was performed to examine the effect of die modification and process change on flow filling of V6 engine blocks. The simulated prediction indicates that the enhancement of cavity filling due to the die and process modification minimizes the occurrence of defects during casting, and consequently improves the quality of blocks. The results of mechanical testing show a significant increase in fatigue strengths, and a moderately improvement on tensile properties for the blocks die cast with the new die design and process in comparison with those produced by the original ones.
文摘The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time
文摘The content of this subject research is to conduct optimization for engine mounting system, and through optimization, it can make the vibration between engine and vehicle body achieve a minimum, using Adams software for simulation. It studies the isolation vibration of the engine mounting system and conducts goal optimization for fixed frequency. This paper uses two methods for optimization. One is to use the rational allocation of fixed frequency to optimize the fixed frequency, and the other is to use energy decoupling method to optimize the fixed frequency. It uses Adams software for simulation of the optimized fixed frequency and conducts comparison of simulated results. The simulated results show that the optimized energy distribution situation almost achieves 90%. Compared with original data, decoupling degree also has a very great improvement, illustrating that the optimized data has greater effect for the isolated vibration of engine, in order to further verify the feasibility of optimization design method.
文摘In this study, the engine suspension system was optimized for making the vibration between engine and car body minimized, and also the optimization was simulated using software Adams. The purpose of this study was to research the vibration isolation of the engine mounting system and implement multi-objective optimization for the intrinsic frequency. In this paper, the optimization was implemented in two ways: (1) the intrinsic frequency was optimized by reasonably allocating it: (2) the intrinsic frequency was optimized using energy decoupling. The optimized intrinsic frequencies were simulated using software Adams and then the simulation results were compared. The simulation results showed that the optimized energy distribution was almost up to 90% and the decoupling degree was greatly improved by comparing the initial data, proving the optimized data played a geater effect on engine vibration isolation and further verifying the feasibility of optimization design method.
基金Supported by National High Technology Research and Development Program of China(863 Program,Grant No.2015AA043701-02)
文摘When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently, a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.
文摘INTRODUCTIONA Current green building practice has been largely advanced by an integrated design process.This integrated design process involves multiple disciplines,such as archi-tecture,civil,mechanical,and electrical engineering.The design method heavily relies on utilizing building performance simulation to illustrate how design param-eters affect the energy consumption and quality of the indoor environment before actual design decisions are made(Anderson,2014).The architectural design tools in the integrated design process supersede traditional geometrical exploration instruments,such as Sketchup,Revit,ArchiCad,and Rhino(Negendahl,2015).More building performance simulating tools,such as Ecotect,Computational Fluid Dynamics(CFD),Radiance,and EnergyPlus,have been developed to help architects measure building performance(e.g.,natural ventilation,daylighting,solar radiation,and energy uses)in the design process and attain green building standards such as Leadership in Energy and Environmental Design(LEED).The information presented by these tools guide architects at a certain level in achieving green building goals.
文摘Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing method and the snapper technique made the valves move smoothly. The flow structure and pattern in a complete engine cycle were described in detail. Tumble ratios around the x-axis and y-axis were analyzed. Comparison of computed pressure with experimental pressure under motored condition revealed that the simulation had high calculation precision; CFD simulation can be regarded as an im-portant tool for resolving the complex aerodynamic behavior in motorcycle engines.
文摘The present study demonstrates the potential of the simulation based on-line synthesis, design and optimization strategy for pressure swing adsorption (PSA) processes developed in our earlier study by implementing on an actual two-bed unit. The unit is very flexible and allows process synthesis from the PSA cycle configuration point of view. The model parameters are regressed and updated using live experimental data. The on-line monitoring and controlling of the operating parameters and operating configurations are done by multi-loop processor programmable logic controller. Separation of air into nitrogen free oxygen as raffinate stream and enriched nitrogen as extract stream using 5A zeolite as adsorbent has been chosen as a specific system for implementing the strategy. The philosophy of the typical optimization and process synthesis exercise implemented on the unit is described. The results show the successful implementation of the developed strategy on the two-bed O2-PSA unit and the application of this general approach to commercial PSA processes.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(U1162202)+2 种基金the Shanghai Second Polytechnic University Key Discipline Construction(4th term)-Control Theory&Control Engineering(XXKPY1308)the Cultivation Program of Young Teachers in Colleges and Universities of Shanghai(ZZegdl4013)the School Foundation of Shanghai Second Polytechnic University(EGD14XQD02)
文摘The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our previous work,a novel industrial p-xylene oxidation reactor model using the free radical mechanism based kinetics has been developed.However,the disturbances such as production rate change,feed composition variability and reactor temperature changes widely exist in the industry process.In this paper,dynamic simulation of the PX oxidation reactor was designed by Aspen Dynamics and used to develop an effective plantwide control structure,which was capable of effectively handling the disturbances in the load and the temperature of the reactor.Step responses of the control structure to the disturbances were shown and served as the foundation of the smooth operation and advanced control strategy of this process in our future work.
文摘This paper treats multi-objective problem for manufacturing process design. A purpose of the process design is to decide combinations of work elements assigned to different work centers. Multiple work elements are ordinarily assigned to each center. Here, infeasible solutions are easily generated by precedence relationship of work elements in process design. The number of infeasible solutions generated is ordinarily larger than that of feasible solutions generated in the process. Therefore, feasible and infeasible solutions are located in any neighborhood in solution space. It is difficult to seek high quality Pareto solutions in this problem by using conventional multi-objective evolutional algorithms. We consider that the problem includes difficulty to seek high quality solutions by the following characteristics: (1) Since infeasible solutions are resemble to good feasible solutions, many infeasible solutions which have good values of objective functions are easily sought in the search process, (2) Infeasible solutions are useful to select new variable conditions generating good feasible solutions in search process. In this study, a multi-objective genetic algorithm including local search is proposed using these characteristics. Maximum value of average operation times and maximum value of dispersion of operation time in all work centers are used as objective functions to promote productivity. The optimal weighted coefficient is introduced to control the ratio of feasible solutions to all solutions selected in crossover and selection process in the algorithm. This paper shows the effectiveness of the proposed algorithm on simple model.
基金the Second Batch of Enterprise-university Cooperative Education Project of the Ministry of Education in 2022(220603608281219)Teacher Education Reform and Teacher Development Research Project of Shaanxi Province in 2023(SJS2023YB040)+3 种基金New Liberal Arts Research and Reform Practice Project of Xi’an University of Science and TechnologyHumanities and Social Science Project of Ministry of Education of China(23YJCZH194)Social Science Foundation of Shaanxi Province,China(2022J052)Natural Science Foundation for Young Scholars of Shaanxi Province,China(2024JC-YBQN-0493).
文摘Virtual simulation teaching of architecture courses is a teaching mode based on the deep integration of information technology and design class in intelligent environment.Under the background of new engineering,relying on a national virtual simulation laboratory,the exploration of green low-carbon simulation in architecture courses is of great importance for improving the dimension of scientific thinking of architecture undergraduates.In this study,based on the background of architecture curriculum construction,the practical content of the teaching reform of architecture courses based on virtual simulation was expounded from three dimensions of reshaping teaching objectives,updating teaching content and improving teaching evaluation.The practical paths of teaching reform of architecture courses were put forward under virtual simulation experiment teaching,namely building teaching teams,strengthening pilot courses,reforming teaching methods,optimizing classroom teaching content and evaluation methods,constructing practical classroom teaching form in line with the learning situation of architecture courses,building a smart learning platform,and closely combining resource construction,application and curriculum content.This study has important practical significance for optimizing and improving the teaching system of professional courses,adapting to the needs of the industry,enhancing competitiveness,and promoting the construction of first-class architecture courses.
基金Project(7131109)supported by the National Defense Pre-research Foundation of ChinaProject(51175500)supported by the National Natural Science Foundation of China
文摘In order to study the major performance indicators of the twin-rotor piston engine(TRPE), Matlab/simulink was used to simulate the mathematical models of its thermodynamic processes. With consideration of the characteristics of the working processes in the TRPE, corresponding differential equations were established and then simplified by period features of the TRPE. Finally, the major boundary conditions were figured out. The changing trends of mass, pressure and temperature of working fuel in the working chamber during a complete engine cycle were presented. The simulation results are consistent with the trends of an actual working cycle in the TRPE, which indicates that the method of simulation is feasible. As the pressure in the working chamber is calculated, all the performance parameters of the TRPE can be obtained. The major performance indicators, such as the indicated mean effective pressure, power to weight ratio and the volume power, are also acquired. Compared with three different types of conventional engines, the TRPE has a bigger utilization ratio of cylinder volume, a higher power to weight ratio and a more compact structure. This indicates that TRPE is superior to conventional engines.