We investigate the approximating capability of Markov modulated Poisson processes (MMPP) for modeling multifractal Internet traffic. The choice of MMPP is motivated by its ability to capture the variability and correl...We investigate the approximating capability of Markov modulated Poisson processes (MMPP) for modeling multifractal Internet traffic. The choice of MMPP is motivated by its ability to capture the variability and correlation in moderate time scales while being analytically tractable. Important statistics of traffic burstiness are described and a customized moment-based fitting procedure of MMPP to traffic traces is presented. Our methodology of doing this is to examine whether the MMPP can be used to predict the performance of a queue to which MMPP sample paths and measured traffic traces are fed for comparison respectively, in addition to the goodness-of-fit test of MMPP. Numerical results and simulations show that the fitted MMPP can approximate multifractal traffic quite well, i.e. accurately predict the queueing performance.展开更多
Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2) from various gas streams. One application of this technology is the treatment of flue gases from combustio...Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2) from various gas streams. One application of this technology is the treatment of flue gases from combustion processes for the purpose of carbon capture and storage. For this application, poly(ethylene oxide)-containing block copolymers such as Pebax or PolyActiveTM polymer are well suited. The thin-film composite membrane that is considered in this overview employs PolyActiveTM polymer as a selective layer material. The membrane shows excellent CO2 permeances of up to 4 m^3(STP).(m^2·h·bar)^-1 (1 bar = 105 Pa) at a carbon dioxide/nitrogen (CO2/N2) selectivity exceeding 55 at ambient temperature. The membrane can be manufactured reproducibly on a pilot scale and mounted into fiat-sheet membrane modules of different designs. The operating performance of these modules can be accurately predicted by specifically developed simulation tools, which employ single-gas permeation data as the only experimental input. The performance of membranes and modules was investigated in different pilot plant studies, in which flue gas and biogas were used as the feed gas streams. The investigated processes showed a stable separation performance, indicating the applicability of PolyActiveTM polymer as a membrane material for industrialscale gas processing.展开更多
We demonstrate fast time-division color etectroholography using a multiple-graphics-processing-unit (GPU) cluster system with a spatial light modulator and a controller to switch the color of the reconstructing ligh...We demonstrate fast time-division color etectroholography using a multiple-graphics-processing-unit (GPU) cluster system with a spatial light modulator and a controller to switch the color of the reconstructing light. The controller comprises a universal serial bus module to drive the liquid crystal optical shutters. By using the controller, the computer-generated hologram (CGH) display node of the multiple-GPU cluster system synchronizes the display of the CGH with the color switching of the reconstructing light. Fast time-division color electroholography at 20 fps is realized for a three-dimensional object comprising 21,000 points per color when 13 GPUs are used in a multiple-GPU cluster system.展开更多
This paper establishes some asymptotic formulas for the infinite-time ruin probabilities of two kinds of dependent risk models. One risk model considers the claim sizes as a modulated process, and the other deals with...This paper establishes some asymptotic formulas for the infinite-time ruin probabilities of two kinds of dependent risk models. One risk model considers the claim sizes as a modulated process, and the other deals with negatively upper orthant dependent claim sizes. In the two models, the inter-arrival times are both assumed to be negatively lower orthant dependent.展开更多
More than a billion people suffer from iron or zinc deficiencies globally. Rice(Oryza sativa L.) iron and zinc biofortification; i.e., intrinsic iron and zinc enrichment of rice grains, is considered the most effectiv...More than a billion people suffer from iron or zinc deficiencies globally. Rice(Oryza sativa L.) iron and zinc biofortification; i.e., intrinsic iron and zinc enrichment of rice grains, is considered the most effective way to tackle these deficiencies. However, rice iron biofortification, by means of conventional breeding, proves difficult due to lack of sufficient genetic variation. Meanwhile,genetic engineering has led to a significant increase in the iron concentration along with zinc concentration in rice grains. The design of impactful genetic engineering biofortification strategies relies upon vast scientific knowledge of precise functions of different genes involved in iron and zinc uptake, translocation and storage. In this review, we present an overview of molecular processes controlling iron and zinc homeostasis in rice. Further,the genetic engineering approaches adopted so far to increase the iron and zinc concentrations in polished rice grains are discussed in detail, highlighting the limitations and/or success of individual strategies. Recent insight suggests that a few genetic engineering strategies are commonly utilized for elevating iron and zinc concentrations in different genetic backgrounds, and thus, it is of great importance to accumulate scientific evidence for diverse genetic engineering strategies to expand the pool of options for biofortifying farmer-preferred cultivars.展开更多
文摘We investigate the approximating capability of Markov modulated Poisson processes (MMPP) for modeling multifractal Internet traffic. The choice of MMPP is motivated by its ability to capture the variability and correlation in moderate time scales while being analytically tractable. Important statistics of traffic burstiness are described and a customized moment-based fitting procedure of MMPP to traffic traces is presented. Our methodology of doing this is to examine whether the MMPP can be used to predict the performance of a queue to which MMPP sample paths and measured traffic traces are fed for comparison respectively, in addition to the goodness-of-fit test of MMPP. Numerical results and simulations show that the fitted MMPP can approximate multifractal traffic quite well, i.e. accurately predict the queueing performance.
基金funded by the Helmholtz Association of German Research Centersthe funding given by the German Federal Ministry for Economic Affairs and Energy to finance the research project METPORE Ⅱ (03ET2016)+2 种基金the METPORE Ⅱ project partnersSSC Strategic Science Consult GmbHBORSIG Membrane Technology GmbH
文摘Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2) from various gas streams. One application of this technology is the treatment of flue gases from combustion processes for the purpose of carbon capture and storage. For this application, poly(ethylene oxide)-containing block copolymers such as Pebax or PolyActiveTM polymer are well suited. The thin-film composite membrane that is considered in this overview employs PolyActiveTM polymer as a selective layer material. The membrane shows excellent CO2 permeances of up to 4 m^3(STP).(m^2·h·bar)^-1 (1 bar = 105 Pa) at a carbon dioxide/nitrogen (CO2/N2) selectivity exceeding 55 at ambient temperature. The membrane can be manufactured reproducibly on a pilot scale and mounted into fiat-sheet membrane modules of different designs. The operating performance of these modules can be accurately predicted by specifically developed simulation tools, which employ single-gas permeation data as the only experimental input. The performance of membranes and modules was investigated in different pilot plant studies, in which flue gas and biogas were used as the feed gas streams. The investigated processes showed a stable separation performance, indicating the applicability of PolyActiveTM polymer as a membrane material for industrialscale gas processing.
基金partially supported by the Japan Society for the Promotion of Science through a Grant-in-Aid for Scientific Research(C)under Grant No.15K00153
文摘We demonstrate fast time-division color etectroholography using a multiple-graphics-processing-unit (GPU) cluster system with a spatial light modulator and a controller to switch the color of the reconstructing light. The controller comprises a universal serial bus module to drive the liquid crystal optical shutters. By using the controller, the computer-generated hologram (CGH) display node of the multiple-GPU cluster system synchronizes the display of the CGH with the color switching of the reconstructing light. Fast time-division color electroholography at 20 fps is realized for a three-dimensional object comprising 21,000 points per color when 13 GPUs are used in a multiple-GPU cluster system.
基金This research is supported by National Science Foundation of China under Grant No. 10671139 and the Science Foundation of Jiangsu Province under Grant No. 11071182.
文摘This paper establishes some asymptotic formulas for the infinite-time ruin probabilities of two kinds of dependent risk models. One risk model considers the claim sizes as a modulated process, and the other deals with negatively upper orthant dependent claim sizes. In the two models, the inter-arrival times are both assumed to be negatively lower orthant dependent.
文摘More than a billion people suffer from iron or zinc deficiencies globally. Rice(Oryza sativa L.) iron and zinc biofortification; i.e., intrinsic iron and zinc enrichment of rice grains, is considered the most effective way to tackle these deficiencies. However, rice iron biofortification, by means of conventional breeding, proves difficult due to lack of sufficient genetic variation. Meanwhile,genetic engineering has led to a significant increase in the iron concentration along with zinc concentration in rice grains. The design of impactful genetic engineering biofortification strategies relies upon vast scientific knowledge of precise functions of different genes involved in iron and zinc uptake, translocation and storage. In this review, we present an overview of molecular processes controlling iron and zinc homeostasis in rice. Further,the genetic engineering approaches adopted so far to increase the iron and zinc concentrations in polished rice grains are discussed in detail, highlighting the limitations and/or success of individual strategies. Recent insight suggests that a few genetic engineering strategies are commonly utilized for elevating iron and zinc concentrations in different genetic backgrounds, and thus, it is of great importance to accumulate scientific evidence for diverse genetic engineering strategies to expand the pool of options for biofortifying farmer-preferred cultivars.