This paper seeks a synthesis of Bayesian and geostatistical approaches to combining categorical data in the context of remote sensing classification. By experiment with aerial photographs and Landsat TM data, accuracy...This paper seeks a synthesis of Bayesian and geostatistical approaches to combining categorical data in the context of remote sensing classification. By experiment with aerial photographs and Landsat TM data, accuracy of spectral, spatial, and combined classification results was evaluated. It was confirmed that the incorporation of spatial information in spectral classification increases accuracy significantly. Secondly, through test with a 5-class and a 3-class classification schemes, it was revealed that setting a proper semantic framework for classification is fundamental to any endeavors of categorical mapping and the most important factor affecting accuracy. Lastly, this paper promotes non-parametric methods for both definition of class membership profiling based on band-specific histograms of image intensities and derivation of spatial probability via indicator kriging, a non-parametric geostatistical technique.展开更多
Internal wave propagation carries considerable vertical shear which can lead to turbulence and mixing. Based on the analysis of more than 2 500 synthetic aperture radar (SAR) and optical satellite images, the in- te...Internal wave propagation carries considerable vertical shear which can lead to turbulence and mixing. Based on the analysis of more than 2 500 synthetic aperture radar (SAR) and optical satellite images, the in- ternal wave propagation in the whole South China Sea was investigated systematically. The results show that (1) in the northeastern South China Sea, most internal waves propagate westward from the Luzon Strait and are diffracted by coral reefs near the Dongsha Islands. Some impinge onto the shelf and a few are reflected; (2) in the northwestern South China Sea, most internal waves are generated at the shelf and propagate northwestward or westward to the coast; (3) in the western South China Sea, most internal waves propagate westward to the Vietnamese coast, except a few propagate southward to the deep sea; and (4) in the southern South China Sea, most internal waves propagate southwestward to the coast. Some prop- agate southeastward to the coast of Kalimantan Island, and a few propagate southeastward because of the influence of the Mekon~ River.展开更多
Satellite images are considered reliable data that preserve land cover information. In the field of remote sensing, these images allow relevant analyses of changes in space over time through the use of computer tools....Satellite images are considered reliable data that preserve land cover information. In the field of remote sensing, these images allow relevant analyses of changes in space over time through the use of computer tools. In this study, we have applied the “discriminant” change detection algorithm. In this, we have verified its effectiveness in multi-temporal studies. Also, we have determined the change in forest dynamics in the Ikongo district of Madagascar between 2000 and 2015. During the treatments, we have used the Landsat TM satellite images for the years 2000, 2005 and 2010 as well as ETM+ for 2015. Thus, analyses carried out have allowed us to note that between 2000-2005, 1.4% of natural forest disappeared. And, between 2005-2010, forests degradation<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">was 1.8%. Also, between 2010-2015, about 0.5% of the natural forest conserved in 2010 disappeared. Furthermore, we have found that the discriminant algorithm is considerably efficient in terms of monitoring the dynamics of forest cover change.</span></span></span>展开更多
The southwest coast of Sri Lanka is well-developed and densely-populated area. The change in coastal environment directly influences people's production and living conditions. The author has pursued a study on the...The southwest coast of Sri Lanka is well-developed and densely-populated area. The change in coastal environment directly influences people's production and living conditions. The author has pursued a study on the classification of coastal sections from Colombo to Tangalla and analyzed coastal erosion and protection, inundation of low-lying areas based on landsat images and airphotos. This paper deals with remote sensing approaches to coastal zone monitoring and puts forward suggestions which might be of important consulting value of planning, decision-making and management of coastal zones in Sri Lanka.展开更多
This study compares three types of classifications of satellite data to identify the most suitable for making city maps in a semi-arid region. The source of our data was GeoEye 1 satellite. To classify this data, two ...This study compares three types of classifications of satellite data to identify the most suitable for making city maps in a semi-arid region. The source of our data was GeoEye 1 satellite. To classify this data, two pro-grammes were used: an Object-Based Classification and a Pixel-Based Classification. The second classification programme was further subdi-vided into two groups. The first group included classes (buildings, streets, vacant land, vegetations) which were treated simultaneously and on a single image basis. The second, however, was where each class was identified individually, and the results of each class produced a single image and were later enhanced. The classification results were then as-sessed and compared before and after enhancement using visual then automatic assessment. The results of the evaluation showed that the pix-el-based individual classification of each class was rated the highest after enhancement, increasing the Overall Classification Accuracy by 2%, from 89% to 91.00%. The results of this classification type were adopted for mapping Jeddah’s buildings, roads, and vegetations.展开更多
A topic studied in cartography is to make the extraction of cartographic features that provide the update of cartographic maps more easily. For this reason many automatic routines were created with the intent to perfo...A topic studied in cartography is to make the extraction of cartographic features that provide the update of cartographic maps more easily. For this reason many automatic routines were created with the intent to perform the features extraction. Despite of all studies about this, some features cannot be found by the algorithm or it can extract some pixels unduly. So the current article aims to show the results with the software development that uses the original and reference image to calculate some statistics about the extraction process. Furthermore, the calculated statistics can be used to evaluate the extraction process.展开更多
A numerical algorithm of principal component analysis (PCA) is proposed and its application in remote sensing image processing is introduced: (1) Multispectral image compression;(2) Multi-spectral image noise cancella...A numerical algorithm of principal component analysis (PCA) is proposed and its application in remote sensing image processing is introduced: (1) Multispectral image compression;(2) Multi-spectral image noise cancellation;(3) Information fusion of multi-spectral images and spot panchromatic images. The software experiments verify and evaluate the effectiveness and accuracy of the proposed algorithm.展开更多
As illustrated by the case of Xuyi County, Jinhu County and Hongze County in Jiangsu Province, China, monitoring and forecasting of rice production were carried out by using HJ-1A satellite remote sensing images. The ...As illustrated by the case of Xuyi County, Jinhu County and Hongze County in Jiangsu Province, China, monitoring and forecasting of rice production were carried out by using HJ-1A satellite remote sensing images. The handhold GPS machines were used to measure the geographical position and some other information of these samples such as area shape. The GPS data and the interpretation marks were used to correct H J-1 image, assist human-computer interactive interpretation, and other operations. The test data had been participated in the whole classification process. The accuracy of interpreted information on rice planting area was more than 90% By using the leaf area index from the normalized difference vegetation index inversion, the biomass from the ratio vegetation index inversion, and combined with the rice yield estimation model, the rice yield was estimated. Further, the thematic map of rice production classification was made based on the rice yield data. According to the comparison results between measured and fitted values of yields and areas of sampling sites, the accuracy of the yield estimation was more than 85%. The results suggest that HJ-A/B images could basically meet the demand of rice growth monitoring and yield forecasting, and could be widely applied to rice production monitoring.展开更多
Pine wilt disease caused by the pinewood nematode Bursaphelenchus xylophilus has led to the death of a large number of pine trees in China.This destructive disease has the characteristics of bring wide-spread,fast ons...Pine wilt disease caused by the pinewood nematode Bursaphelenchus xylophilus has led to the death of a large number of pine trees in China.This destructive disease has the characteristics of bring wide-spread,fast onset,and long incubation time.Most importantly,in China,the fatality rate in pines is as high as 100%.The key to reducing this mortality is how to quickly find the infected trees.We proposed a method of automatically identifying infected trees by a convolution neural network and bounding box tool.This method rapidly locates the infected area by classifying and recognizing remote sensing images obtained by high resolution earth observation Satellite.The recognition accuracy of the test data set was 99.4%,and the remote sensing image combined with convolution neural network algorithm can identify and determine the distribution of the infected trees.It can provide strong technical support for the prevention and control of pine wilt disease.展开更多
In order to apply Satellite Remote Sensing (RS) to mining areas, some key issues should be solved. Based on an introduction to relative studying background, related key issues are proposed and analyzed oriented to the...In order to apply Satellite Remote Sensing (RS) to mining areas, some key issues should be solved. Based on an introduction to relative studying background, related key issues are proposed and analyzed oriented to the development of RS information science and demands of mining areas. Band selection and combination optimization of Landsat TM is discussed firstly, and it proved that the combination of Band 3, Band 4 and Band 5 has the largest information amount in all three-band combination schemes by both N-dimensional entropy method and Genetic Algorithm (GA). After that the filtering of Radarsat image is discussed. Different filtering methods are experimented and compared, and adaptive methods are more efficient than others. Finally the classification of satellite RS image is studied, and some new methods including classification by improved BPNN(Back Propagation Neural Network) and classification based on GIS and knowledge are proposed.展开更多
The use of visible and infrared remote sensing images to calculate the water area is an effective means to grasp the basic situation of water resources,and water segmentation is the premise of statistics.Generally,the...The use of visible and infrared remote sensing images to calculate the water area is an effective means to grasp the basic situation of water resources,and water segmentation is the premise of statistics.Generally,the edge features of the water in the remote sensing images are complex.When the traditional morphology is used for image segmentation,it is easy to change the image edge and affect the accuracy of image segmentation because the fixed structuring elements are used to perform morphological operations on the image.To segment water in the remote sensing image accurately,a remote sensing image water segmentation method based on adaptive morphological elliptical structuring elements is proposed.Firstly,the eigenvalue and eigenvector of the image are estimated by linear structure tensor,and the elliptical structuring elements are constructed by the eigenvalue and eigenvector.Then adaptive morphological operations are defined,combining the close operation to eliminate the influence of dark detail noise on water without overstretching the water edge,so that the water edge can be maintained more accurately.Finally,on this basis,the water area can be segmented by gray slice.The experimental results show that the proposed method has higher segmentation accuracy and the average segmentation error is less than 1.43%.展开更多
The remote sensing image classification has stimulated considerable interest as an effective method for better retrieving information from the rapidly increasing large volume, complex and distributed satellite remote ...The remote sensing image classification has stimulated considerable interest as an effective method for better retrieving information from the rapidly increasing large volume, complex and distributed satellite remote imaging data of large scale and cross-time, due to the increase of remote image quantities and image resolutions. In the paper, the genetic algorithms were employed to solve the weighting of the radial basis faction networks in order to improve the precision of remote sensing image classification. The remote sensing image classification was also introduced for the GIS spatial analysis and the spatial online analytical processing (OLAP), and the resulted effectiveness was demonstrated in the analysis of land utilization variation of Daqing city.展开更多
The Staring Area Imaging Technology(SAIT) satellite continuously "images" the target over a certain time range, and can realize continuous imaging and multi-angle imaging of the area of interest. It has the ...The Staring Area Imaging Technology(SAIT) satellite continuously "images" the target over a certain time range, and can realize continuous imaging and multi-angle imaging of the area of interest. It has the characteristics of flexible imaging parameter setting and fast image preprocessing speed, enabling dynamic target detection and tracking, super-resolution, surface 3 D model construction, night-time imaging and many other application tasks. Based on the technical characteristics of the SAIT satellite, this paper analyzes the challenges in satellite development and data processing, focuses on the quasi-realtime application of SAIT satellite data, and looks at the development trend of the SAIT satellite.展开更多
Using satellite remote sensing to monitor oil spill on the sea is an advanced means of oil spill monitoring, and it has the characteristics of wide coverage, speediness and real time, synchronization, continuity, and ...Using satellite remote sensing to monitor oil spill on the sea is an advanced means of oil spill monitoring, and it has the characteristics of wide coverage, speediness and real time, synchronization, continuity, and low cost. Hence, accelerating the research on this technology and establishing a satellite remote sensing monitoring mechanism suitable for oil spill emergency situations is of great significance to improve China's oil spill monitoring capability and prevent or reduce the pollution damage caused by oil spill in the marine environment.This paper analyzes and studies the current situation using satellite remote sensing to monitor oil spills at home and abroad. Based on the basic principle of satellite remote sensing, this paper systematically studies the satellite remote sensing monitoring oil spill principles, satellite data processing methods and oil spill information identification, and summarizes an oil spill identification system that can realize oil spill information reproduction. This system provides an important means of support for the handling of oil spill accidents.展开更多
Ophiolites, which have been tectonically emplaced along continental margins and island arcs, are significant to the understanding of mountain belt evolution. In the Himalayas, the ophiolitic suite of rocks occur along...Ophiolites, which have been tectonically emplaced along continental margins and island arcs, are significant to the understanding of mountain belt evolution. In the Himalayas, the ophiolitic suite of rocks occur along the Indussuture zone from Hanle in the southeast to Dras\|Kargil sector in the northwest and it represents the remnant of the compressed uplifted wedge of the oceanic crust between the two colliding continental masses, the Indian and the Asian plates.. These ophiolites are temporally and spatially correlated with the culminating phase of the Himalayan orogeny. The Indus River flows to its north separating the ophiolite from the Trans Himalayan litho\|units. Geological mapping in the hostile and inaccessible mountainous terrains of the Himalaya has always posed a great challenge to geologists. Nevertheless, a number of geologists have undertaken such arduous mapping expeditions in the past and prepared fairly good geological maps of these terrains .However there always existed disputes on the accuracy of lithological boundaries and structural details in these maps because many of these boundaries and structural features were completed through extrapolations and/or interpolations as the ruggedness and inaccessibility of a large part of the terrain forbid physical examination of every outcrop. It is in this context the potential of remote sensing, especially of satellite images, is to be appreciated.展开更多
This study was conducted to produce a GIS-based land use/land cover(LULC)balance map for a certain period as a reference for policymakers in planning their future regional development.This study also measures supervis...This study was conducted to produce a GIS-based land use/land cover(LULC)balance map for a certain period as a reference for policymakers in planning their future regional development.This study also measures supervised classification accuracy based on remote sensing and geographic information system(GIS)integration with field conditions.In June 2005 satellite imagery 7 ETM+was used as asset maps to assess land-use changes(LUC).Although in March 2019,the liability maps used satellite imagery 8 OLI/TIRS.Methods analysis consists of pre-image processing,image interpretation,random point,field check,and accuracy assessment.The image processing results were overlaid with an Indonesian topographic map to draw a LULC balance map.The findings indicate that in June 2005 and March 2019,each LULC had an assessment accuracy value of 82%and 86%,with a predicted assessment accuracy value of 18.05%and20.50%,respectively.These findings are checked to determine the suitability performance of field-based imaging approaches based on the Cohen Kappa coefficient criteria of 0.45 and 0.48 for June 2005 and March 2019.Based on these results,the image processing precision and suitability were excellent since they are more than 80%and satisfy the Cohen Kappa performance criterion.Furthermore,geospatial data on the LULC balance map is essential as a guide for planners and decision-makers to plan their regional development.展开更多
Fusing satellite(remote sensing)images is an interesting topic in processing satellite images.The result image is achieved through fusing information from spectral and panchromatic images for sharpening.In this paper,...Fusing satellite(remote sensing)images is an interesting topic in processing satellite images.The result image is achieved through fusing information from spectral and panchromatic images for sharpening.In this paper,a new algorithm based on based the Artificial bee colony(ABC)algorithm with peak signalto-noise ratio(PSNR)index optimization is proposed to fusing remote sensing images in this paper.Firstly,Wavelet transform is used to split the input images into components over the high and low frequency domains.Then,two fusing rules are used for obtaining the fused images.The first rule is“the high frequency components are fused by using the average values”.The second rule is“the low frequency components are fused by using the combining rule with parameter”.The parameter for fusing the low frequency components is defined by using ABC algorithm,an algorithm based on PSNR index optimization.The experimental results on different input images show that the proposed algorithm is better than some recent methods.展开更多
Nowadays remote sensing is an important technique for observing Earth surface applied to different areas such as, land use, urban planning, remote monitoring, real time deformation of the soil that can be associated w...Nowadays remote sensing is an important technique for observing Earth surface applied to different areas such as, land use, urban planning, remote monitoring, real time deformation of the soil that can be associated with earthquakes or landslides, the variations in thickness of the glaciers, the measurement of volume changes in the case of volcanic eruptions, deforestation, etc. To follow the evolution of these phenomena and to predict their future states, many approaches have been proposed. However, these approaches do not respond completely to the specialists who process yet more commonly the data extracted from the images in their studies to predict the future. In this paper, we propose an innovative methodology based on hidden Markov models (HMM). Our approach exploits temporal series of satellite images in order to predict spatio-temporal phenomena. It uses HMM for representing and making prediction concerning any objects in a satellite image. The first step builds a set of feature vectors gathering the available information. The next step uses a Baum-Welch learning algorithm on these vectors for detecting state changes. Finally, the system interprets these changes to make predictions. The performance of our approach is evaluated by tests of space-time interpretation of events conducted over two study sites, using different time series of SPOT images and application to the change in vegetation with LANDSAT images.展开更多
With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping ...With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping remote sensing information.At present,optical mapping and remote sensing satellites already have sub-meter spatial resolution capabilities,but there is a serious lag problem in mapping and remote sensing information services.It is urgent to develop intelligent mapping and remote sensing satellites to promote the transformation and upgrading to real-time intelligent services.Firstly,based on the three imaging systems of the optical mapping and remote sensing satellites and their realization methods and application characteristics,this paper analyzes the applicable system of the intelligent mapping and remote sensing satellites.Further,according to the application requirements of real-time,intelligence,and popularization,puts forward the design concept of integrated intelligent remote sensing satellite integrating communication,navigation,and remote sensing and focuses on the service mode and integrated function composition of intelligent remote sensing satellite.Then expounds on the performance and characteristics of the Luojia-301 satellite,a new generation of intelligent surveying and mapping remote sensing scientific test satellite.And finally summarizes and prospects the development and mission of intelligent mapping remote sensing satellites.Luojia-301 satellite integrates remote sensing and communication functions.It explores an efficient and intelligent service mode of mapping and remote sensing information from data acquisition to the application terminal and provides a real service verification platform for on-orbit processing and real-time transmission of remote sensing data based on space-ground internet,which is of great significance to the construction of China’s spatial information network.展开更多
文摘This paper seeks a synthesis of Bayesian and geostatistical approaches to combining categorical data in the context of remote sensing classification. By experiment with aerial photographs and Landsat TM data, accuracy of spectral, spatial, and combined classification results was evaluated. It was confirmed that the incorporation of spatial information in spectral classification increases accuracy significantly. Secondly, through test with a 5-class and a 3-class classification schemes, it was revealed that setting a proper semantic framework for classification is fundamental to any endeavors of categorical mapping and the most important factor affecting accuracy. Lastly, this paper promotes non-parametric methods for both definition of class membership profiling based on band-specific histograms of image intensities and derivation of spatial probability via indicator kriging, a non-parametric geostatistical technique.
基金The Chinese Offshore Investigation and Assessment under contract No.908-01-BC04the European Space Agency and the Ministry of Science and Technology of the People’s Republic of China Dragon 2 Cooperation Programme under contract No.5316the scientific research fund of the Second Institute of Oceanography,State Oceanic Administration under contract No.JG1206
文摘Internal wave propagation carries considerable vertical shear which can lead to turbulence and mixing. Based on the analysis of more than 2 500 synthetic aperture radar (SAR) and optical satellite images, the in- ternal wave propagation in the whole South China Sea was investigated systematically. The results show that (1) in the northeastern South China Sea, most internal waves propagate westward from the Luzon Strait and are diffracted by coral reefs near the Dongsha Islands. Some impinge onto the shelf and a few are reflected; (2) in the northwestern South China Sea, most internal waves are generated at the shelf and propagate northwestward or westward to the coast; (3) in the western South China Sea, most internal waves propagate westward to the Vietnamese coast, except a few propagate southward to the deep sea; and (4) in the southern South China Sea, most internal waves propagate southwestward to the coast. Some prop- agate southeastward to the coast of Kalimantan Island, and a few propagate southeastward because of the influence of the Mekon~ River.
文摘Satellite images are considered reliable data that preserve land cover information. In the field of remote sensing, these images allow relevant analyses of changes in space over time through the use of computer tools. In this study, we have applied the “discriminant” change detection algorithm. In this, we have verified its effectiveness in multi-temporal studies. Also, we have determined the change in forest dynamics in the Ikongo district of Madagascar between 2000 and 2015. During the treatments, we have used the Landsat TM satellite images for the years 2000, 2005 and 2010 as well as ETM+ for 2015. Thus, analyses carried out have allowed us to note that between 2000-2005, 1.4% of natural forest disappeared. And, between 2005-2010, forests degradation<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">was 1.8%. Also, between 2010-2015, about 0.5% of the natural forest conserved in 2010 disappeared. Furthermore, we have found that the discriminant algorithm is considerably efficient in terms of monitoring the dynamics of forest cover change.</span></span></span>
文摘The southwest coast of Sri Lanka is well-developed and densely-populated area. The change in coastal environment directly influences people's production and living conditions. The author has pursued a study on the classification of coastal sections from Colombo to Tangalla and analyzed coastal erosion and protection, inundation of low-lying areas based on landsat images and airphotos. This paper deals with remote sensing approaches to coastal zone monitoring and puts forward suggestions which might be of important consulting value of planning, decision-making and management of coastal zones in Sri Lanka.
文摘This study compares three types of classifications of satellite data to identify the most suitable for making city maps in a semi-arid region. The source of our data was GeoEye 1 satellite. To classify this data, two pro-grammes were used: an Object-Based Classification and a Pixel-Based Classification. The second classification programme was further subdi-vided into two groups. The first group included classes (buildings, streets, vacant land, vegetations) which were treated simultaneously and on a single image basis. The second, however, was where each class was identified individually, and the results of each class produced a single image and were later enhanced. The classification results were then as-sessed and compared before and after enhancement using visual then automatic assessment. The results of the evaluation showed that the pix-el-based individual classification of each class was rated the highest after enhancement, increasing the Overall Classification Accuracy by 2%, from 89% to 91.00%. The results of this classification type were adopted for mapping Jeddah’s buildings, roads, and vegetations.
文摘A topic studied in cartography is to make the extraction of cartographic features that provide the update of cartographic maps more easily. For this reason many automatic routines were created with the intent to perform the features extraction. Despite of all studies about this, some features cannot be found by the algorithm or it can extract some pixels unduly. So the current article aims to show the results with the software development that uses the original and reference image to calculate some statistics about the extraction process. Furthermore, the calculated statistics can be used to evaluate the extraction process.
文摘A numerical algorithm of principal component analysis (PCA) is proposed and its application in remote sensing image processing is introduced: (1) Multispectral image compression;(2) Multi-spectral image noise cancellation;(3) Information fusion of multi-spectral images and spot panchromatic images. The software experiments verify and evaluate the effectiveness and accuracy of the proposed algorithm.
文摘As illustrated by the case of Xuyi County, Jinhu County and Hongze County in Jiangsu Province, China, monitoring and forecasting of rice production were carried out by using HJ-1A satellite remote sensing images. The handhold GPS machines were used to measure the geographical position and some other information of these samples such as area shape. The GPS data and the interpretation marks were used to correct H J-1 image, assist human-computer interactive interpretation, and other operations. The test data had been participated in the whole classification process. The accuracy of interpreted information on rice planting area was more than 90% By using the leaf area index from the normalized difference vegetation index inversion, the biomass from the ratio vegetation index inversion, and combined with the rice yield estimation model, the rice yield was estimated. Further, the thematic map of rice production classification was made based on the rice yield data. According to the comparison results between measured and fitted values of yields and areas of sampling sites, the accuracy of the yield estimation was more than 85%. The results suggest that HJ-A/B images could basically meet the demand of rice growth monitoring and yield forecasting, and could be widely applied to rice production monitoring.
基金supported by the National Science and Technology Major Project of China’s High Resolution Earth Observation System(21-Y30B02-9001-19/22)the Heilongjiang Provincial Natural Science Foundation of China(YQ2020C018)。
文摘Pine wilt disease caused by the pinewood nematode Bursaphelenchus xylophilus has led to the death of a large number of pine trees in China.This destructive disease has the characteristics of bring wide-spread,fast onset,and long incubation time.Most importantly,in China,the fatality rate in pines is as high as 100%.The key to reducing this mortality is how to quickly find the infected trees.We proposed a method of automatically identifying infected trees by a convolution neural network and bounding box tool.This method rapidly locates the infected area by classifying and recognizing remote sensing images obtained by high resolution earth observation Satellite.The recognition accuracy of the test data set was 99.4%,and the remote sensing image combined with convolution neural network algorithm can identify and determine the distribution of the infected trees.It can provide strong technical support for the prevention and control of pine wilt disease.
基金Under the auspices of the Research Foundation of Doctoral Point of China(No.RFDP20010290006).
文摘In order to apply Satellite Remote Sensing (RS) to mining areas, some key issues should be solved. Based on an introduction to relative studying background, related key issues are proposed and analyzed oriented to the development of RS information science and demands of mining areas. Band selection and combination optimization of Landsat TM is discussed firstly, and it proved that the combination of Band 3, Band 4 and Band 5 has the largest information amount in all three-band combination schemes by both N-dimensional entropy method and Genetic Algorithm (GA). After that the filtering of Radarsat image is discussed. Different filtering methods are experimented and compared, and adaptive methods are more efficient than others. Finally the classification of satellite RS image is studied, and some new methods including classification by improved BPNN(Back Propagation Neural Network) and classification based on GIS and knowledge are proposed.
基金National Natural Science Foundation of China(No.61761027)Graduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)。
文摘The use of visible and infrared remote sensing images to calculate the water area is an effective means to grasp the basic situation of water resources,and water segmentation is the premise of statistics.Generally,the edge features of the water in the remote sensing images are complex.When the traditional morphology is used for image segmentation,it is easy to change the image edge and affect the accuracy of image segmentation because the fixed structuring elements are used to perform morphological operations on the image.To segment water in the remote sensing image accurately,a remote sensing image water segmentation method based on adaptive morphological elliptical structuring elements is proposed.Firstly,the eigenvalue and eigenvector of the image are estimated by linear structure tensor,and the elliptical structuring elements are constructed by the eigenvalue and eigenvector.Then adaptive morphological operations are defined,combining the close operation to eliminate the influence of dark detail noise on water without overstretching the water edge,so that the water edge can be maintained more accurately.Finally,on this basis,the water area can be segmented by gray slice.The experimental results show that the proposed method has higher segmentation accuracy and the average segmentation error is less than 1.43%.
基金Sponsored by the National Natural Science Foundation of China (Grant No.40271044), Natural Science Foundation(Grant No.TK2005 -17) and Projectof Science Backbone of Heilongjiang Province(Grant No.1151G021).
文摘The remote sensing image classification has stimulated considerable interest as an effective method for better retrieving information from the rapidly increasing large volume, complex and distributed satellite remote imaging data of large scale and cross-time, due to the increase of remote image quantities and image resolutions. In the paper, the genetic algorithms were employed to solve the weighting of the radial basis faction networks in order to improve the precision of remote sensing image classification. The remote sensing image classification was also introduced for the GIS spatial analysis and the spatial online analytical processing (OLAP), and the resulted effectiveness was demonstrated in the analysis of land utilization variation of Daqing city.
文摘The Staring Area Imaging Technology(SAIT) satellite continuously "images" the target over a certain time range, and can realize continuous imaging and multi-angle imaging of the area of interest. It has the characteristics of flexible imaging parameter setting and fast image preprocessing speed, enabling dynamic target detection and tracking, super-resolution, surface 3 D model construction, night-time imaging and many other application tasks. Based on the technical characteristics of the SAIT satellite, this paper analyzes the challenges in satellite development and data processing, focuses on the quasi-realtime application of SAIT satellite data, and looks at the development trend of the SAIT satellite.
文摘Using satellite remote sensing to monitor oil spill on the sea is an advanced means of oil spill monitoring, and it has the characteristics of wide coverage, speediness and real time, synchronization, continuity, and low cost. Hence, accelerating the research on this technology and establishing a satellite remote sensing monitoring mechanism suitable for oil spill emergency situations is of great significance to improve China's oil spill monitoring capability and prevent or reduce the pollution damage caused by oil spill in the marine environment.This paper analyzes and studies the current situation using satellite remote sensing to monitor oil spills at home and abroad. Based on the basic principle of satellite remote sensing, this paper systematically studies the satellite remote sensing monitoring oil spill principles, satellite data processing methods and oil spill information identification, and summarizes an oil spill identification system that can realize oil spill information reproduction. This system provides an important means of support for the handling of oil spill accidents.
文摘Ophiolites, which have been tectonically emplaced along continental margins and island arcs, are significant to the understanding of mountain belt evolution. In the Himalayas, the ophiolitic suite of rocks occur along the Indussuture zone from Hanle in the southeast to Dras\|Kargil sector in the northwest and it represents the remnant of the compressed uplifted wedge of the oceanic crust between the two colliding continental masses, the Indian and the Asian plates.. These ophiolites are temporally and spatially correlated with the culminating phase of the Himalayan orogeny. The Indus River flows to its north separating the ophiolite from the Trans Himalayan litho\|units. Geological mapping in the hostile and inaccessible mountainous terrains of the Himalaya has always posed a great challenge to geologists. Nevertheless, a number of geologists have undertaken such arduous mapping expeditions in the past and prepared fairly good geological maps of these terrains .However there always existed disputes on the accuracy of lithological boundaries and structural details in these maps because many of these boundaries and structural features were completed through extrapolations and/or interpolations as the ruggedness and inaccessibility of a large part of the terrain forbid physical examination of every outcrop. It is in this context the potential of remote sensing, especially of satellite images, is to be appreciated.
文摘This study was conducted to produce a GIS-based land use/land cover(LULC)balance map for a certain period as a reference for policymakers in planning their future regional development.This study also measures supervised classification accuracy based on remote sensing and geographic information system(GIS)integration with field conditions.In June 2005 satellite imagery 7 ETM+was used as asset maps to assess land-use changes(LUC).Although in March 2019,the liability maps used satellite imagery 8 OLI/TIRS.Methods analysis consists of pre-image processing,image interpretation,random point,field check,and accuracy assessment.The image processing results were overlaid with an Indonesian topographic map to draw a LULC balance map.The findings indicate that in June 2005 and March 2019,each LULC had an assessment accuracy value of 82%and 86%,with a predicted assessment accuracy value of 18.05%and20.50%,respectively.These findings are checked to determine the suitability performance of field-based imaging approaches based on the Cohen Kappa coefficient criteria of 0.45 and 0.48 for June 2005 and March 2019.Based on these results,the image processing precision and suitability were excellent since they are more than 80%and satisfy the Cohen Kappa performance criterion.Furthermore,geospatial data on the LULC balance map is essential as a guide for planners and decision-makers to plan their regional development.
文摘Fusing satellite(remote sensing)images is an interesting topic in processing satellite images.The result image is achieved through fusing information from spectral and panchromatic images for sharpening.In this paper,a new algorithm based on based the Artificial bee colony(ABC)algorithm with peak signalto-noise ratio(PSNR)index optimization is proposed to fusing remote sensing images in this paper.Firstly,Wavelet transform is used to split the input images into components over the high and low frequency domains.Then,two fusing rules are used for obtaining the fused images.The first rule is“the high frequency components are fused by using the average values”.The second rule is“the low frequency components are fused by using the combining rule with parameter”.The parameter for fusing the low frequency components is defined by using ABC algorithm,an algorithm based on PSNR index optimization.The experimental results on different input images show that the proposed algorithm is better than some recent methods.
文摘Nowadays remote sensing is an important technique for observing Earth surface applied to different areas such as, land use, urban planning, remote monitoring, real time deformation of the soil that can be associated with earthquakes or landslides, the variations in thickness of the glaciers, the measurement of volume changes in the case of volcanic eruptions, deforestation, etc. To follow the evolution of these phenomena and to predict their future states, many approaches have been proposed. However, these approaches do not respond completely to the specialists who process yet more commonly the data extracted from the images in their studies to predict the future. In this paper, we propose an innovative methodology based on hidden Markov models (HMM). Our approach exploits temporal series of satellite images in order to predict spatio-temporal phenomena. It uses HMM for representing and making prediction concerning any objects in a satellite image. The first step builds a set of feature vectors gathering the available information. The next step uses a Baum-Welch learning algorithm on these vectors for detecting state changes. Finally, the system interprets these changes to make predictions. The performance of our approach is evaluated by tests of space-time interpretation of events conducted over two study sites, using different time series of SPOT images and application to the change in vegetation with LANDSAT images.
基金National Natural Science Foundation of China(Nos.91738302,91838303)。
文摘With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping remote sensing information.At present,optical mapping and remote sensing satellites already have sub-meter spatial resolution capabilities,but there is a serious lag problem in mapping and remote sensing information services.It is urgent to develop intelligent mapping and remote sensing satellites to promote the transformation and upgrading to real-time intelligent services.Firstly,based on the three imaging systems of the optical mapping and remote sensing satellites and their realization methods and application characteristics,this paper analyzes the applicable system of the intelligent mapping and remote sensing satellites.Further,according to the application requirements of real-time,intelligence,and popularization,puts forward the design concept of integrated intelligent remote sensing satellite integrating communication,navigation,and remote sensing and focuses on the service mode and integrated function composition of intelligent remote sensing satellite.Then expounds on the performance and characteristics of the Luojia-301 satellite,a new generation of intelligent surveying and mapping remote sensing scientific test satellite.And finally summarizes and prospects the development and mission of intelligent mapping remote sensing satellites.Luojia-301 satellite integrates remote sensing and communication functions.It explores an efficient and intelligent service mode of mapping and remote sensing information from data acquisition to the application terminal and provides a real service verification platform for on-orbit processing and real-time transmission of remote sensing data based on space-ground internet,which is of great significance to the construction of China’s spatial information network.