期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Spheroidization of molybdenum powder by radio frequency thermal plasma 被引量:7
1
作者 Xiao-ping Liu Kuai-she Wang +2 位作者 Ping Hu Qiang Chen Alex A.Volinsky 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第11期1212-1218,共7页
To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency(RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in th... To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency(RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in this paper. The effects of the carrier gas flow rate and molybdenum powder feeding rate on the shape and size of the final products were studied. The molybdenum powder morphology was examined using high-resolution scanning electron microscopy. The powder phases were analyzed by X-ray diffraction. The tap density and apparent density of the molybdenum powder were investigated using a Hall flow meter and a Scott volumeter. The optimal process parameters for the spherical molybdenum powder preparation are 50 g/min powder feeding rate and 0.6 m^3/h carrier gas rate. In addition, pure spherical molybdenum powder can be obtained from irregular powder, and the tap density is enhanced after plasma processing. The average size is reduced from 72 to 62 μm, and the tap density is increased from 2.7 to 6.2 g/cm^3. Therefore, RF plasma is a promising method for the preparation of high-density and high-purity spherical powders. 展开更多
关键词 powder materials molybdenum radio frequency plasma spheroidization processing parameters
下载PDF
Electrical and dielectric characterization of Au/ZnO/n-Si device depending frequency and voltage
2
作者 I Orak A Kocyigit S Ahndal 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期477-483,共7页
Au/Zn O/n-type Si device is obtained using atomic layer deposition(ALD) for Zn O layer, and some main electrical parameters are investigated, such as surface/interface state(Nss), barrier height(Φb), series res... Au/Zn O/n-type Si device is obtained using atomic layer deposition(ALD) for Zn O layer, and some main electrical parameters are investigated, such as surface/interface state(Nss), barrier height(Φb), series resistance(Rs), donor concentration(Nd), and dielectric characterization depending on frequency or voltage. These parameters are acquired by use of impedance spectroscopy measurements at frequencies ranging from 10 k Hz to 1 MHz and the direct current(DC) bias voltages in a range from-2 V to +2 V at room temperature are used. The main electrical parameters and dielectric parameters,such as dielectric constant(ε"), dielectric loss(ε"), loss tangent(tan δ), the real and imaginary parts of electric modulus(M and M), and alternating current(AC) electrical conductivity(σ) are affected by changing voltage and frequency. The characterizations show that some main electrical parameters usually decrease with increasing frequency because charge carriers at surface states have not enough time to fallow an external AC signal at high frequencies, and all dielectric parameters strongly depend on the voltage and frequency especially in the depletion and accumulation regions. Consequently, it can be concluded that interfacial polarization and interface charges can easily follow AC signal at low frequencies. 展开更多
关键词 Au/ZnO/n–Si device dielectric properties polarization process frequency and voltage dependence
下载PDF
Frequency Structures Vibration Identified by an Adaptative Filtering Techiques Applied on GPS L1 Signal
3
作者 Ana Paula C.Larocca Ricardo E.Schaal +2 位作者 Gabriel do N.Guimaraes Igor Machado da Silveira Paulo César Lima Segantine 《Positioning》 2013年第2期137-143,共7页
This paper is part of a research under enhancement since 2001, in which the main objective is to measure small dynamic displacements by analysis of L1 GPS carrier frequency with 1575.42 MHz—wavelength 19.05 cm, under... This paper is part of a research under enhancement since 2001, in which the main objective is to measure small dynamic displacements by analysis of L1 GPS carrier frequency with 1575.42 MHz—wavelength 19.05 cm, under an adaptive method for collecting data and filtering techniques. This method, named Phase Residual Method (PRM) is based on the frequency domain analysis of the phase residuals resulted from the L1 double difference static data processing of two satellites in almost orthogonal elevation angle. In this work it is proposed to obtain the phase residuals directly from the raw phase observable collected in a short baseline during a limited time span, in lieu of obtaining the residual data file from regular GPS processing programs. In order to improve the ability to detect millimetric displacements, two filtering techniques are introduced. The first one is the autocorrelation that reduces the phase noise with random time behavior. The other one is the running mean to separate low frequency from the high frequency phase sources. Two trials are presented to verify the proposed method and filtering techniques applied. One simulates a 2.5 millimeter vertical GPS antenna displacement and the second using the data collected during a bridge dynamic load test. The results show a good consistency to detect millimetric oscillations from L1 frequency and filtering techniques. 展开更多
关键词 L1 GPS frequency Processing Filtering Techniques Millimetric Displacements Single frequency Receiver
下载PDF
Tracking algorithm of BPSK signal in low bit SNR and high dynamic scenarios
4
作者 王鹏 陈国瑛 《Journal of Beijing Institute of Technology》 EI CAS 2015年第1期118-127,共10页
A new tracking algorithm is proposed aiming at the tracking problem in low bit signal-to- noise ratio (i. e. , Eb/N0 ) scenarios, in which the bit clock regenerated by bit synchronization loop decides loop update mo... A new tracking algorithm is proposed aiming at the tracking problem in low bit signal-to- noise ratio (i. e. , Eb/N0 ) scenarios, in which the bit clock regenerated by bit synchronization loop decides loop update moment. The double frequency processing and non-coherent accumulation tech- nologies are applied to eliminate the impact of data polarity inversion, and then long time accumula- tion improves the input signal-to-noise ratio of discriminator. The frequency locked loop and phase locked loop constitute a carrier loop in parallel, which can meet the high dynamic demands. The ef- fectiveness of this algorithm has been corroborated by theoretical analysis, simulation and measure- ments, and the new tracking algorithm has been used in an aerospace engineering project successfully. 展开更多
关键词 TRACKING double frequency processing NON-COHERENT low bit signal-to-noise ratio
下载PDF
Seismic description and fluid identification of thin reservoirs in Shengli Chengdao extra-shallow sea oilfield
5
作者 SHU Ningkai SU Chaoguang +5 位作者 SHI Xiaoguang LI Zhiping ZHANG Xuefang CHEN Xianhong ZHU Jianbing SONG Liang 《Petroleum Exploration and Development》 CSCD 2021年第4期889-899,共11页
The meandering channel deposit of the upper member of Neogene Guantao Formation in Shengli Chengdao extra-shallow sea oilfield is characterized by rapid change in sedimentary facies.In addition,affected by surface tid... The meandering channel deposit of the upper member of Neogene Guantao Formation in Shengli Chengdao extra-shallow sea oilfield is characterized by rapid change in sedimentary facies.In addition,affected by surface tides and sea water reverberation,the double sensor seismic data processed by conventional methods has low signal-to-noise ratio and low resolution,and thus cannot meet the needs of seismic description and oil-bearing fluid identification of thin reservoirs less than 10 meters thick in this area.The two-step high resolution frequency bandwidth expanding processing technology was used to improve the signal-to-noise ratio and resolution of the seismic data,as a result,the dominant frequency of the seismic data was enhanced from 30 Hz to 50 Hz,and the sand body thickness resolution was enhanced from 10 m to 6 m.On the basis of fine layer control by seismic data,three types of seismic facies models,floodplain,natural levee and point bar,were defined,and the intelligent horizon-facies controlled recognition technology was worked out,which had a prediction error of reservoir thickness of less than 1.5 m.Clearly,the description accuracy of meandering channel sand bodies has been improved.The probability semi-quantitative oiliness identification method of fluid by prestack multi-parameters has been worked out by integrating Poisson’s ratio,fluid factor,product of Lame parameter and density,and other prestack elastic parameters,and the method has a coincidence rate of fluid identification of more than 90%,providing solid technical support for the exploration and development of thin reservoirs in Shengli Chengdao extra-shallow sea oilfield,which is expected to provide reference for the exploration and development of similar oilfields in China. 展开更多
关键词 Jiyang Depression Chengdao Oilfield extra-shallow sea NEOGENE Sea and land dual-sensor prestack two-step high resolution frequency bandwidth expanding processing intelligent horizon-facies controlled recognition technology prestack seismic fluid identification
下载PDF
Ion beam figuring of continuous phase plates based on the frequency filtering process
6
作者 Mingjin XU Yifan DAI +3 位作者 Xuhui XIE Lin ZHOU Shengyi LI Wenqiang PENG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2017年第1期110-115,共6页
Ion beam figuring (IBF) technology is an effective technique for fabricating continuous phase plates (CPPs) with small feature structures. This study proposes a multi-pass IBF approach with different beam diameter... Ion beam figuring (IBF) technology is an effective technique for fabricating continuous phase plates (CPPs) with small feature structures. This study proposes a multi-pass IBF approach with different beam diameters based on the frequency filtering method to improve the machining accuracy and efficiency of CPPs during IBF. We present the selection principle of the frequency filtering method, which incorporates different removal functions that maximize material removal over the topographical frequencies being imprinted. Large removal functions are used early in the fabrication to figure the surface profile with low frequency. Small removal functions are used to perform final topographical correction with higher fre- quency and larger surface gradient. A high-precision surface can be obtained as long as the filtering frequency is suitably selected. This method maximizes the high removal efficiency of the large removal function and the high corrective capability of the small removal function. Consequently, the fast convergence of the machining accuracy and efficiency can be achieved. 展开更多
关键词 ion beam figuring (IBF) continuous phaseplates (CPPs) machining accuracy machining efficiency frequency filtering process
原文传递
Reconfigurable single-shot incoherent optical signal processing system for chirped microwave signal compression 被引量:3
7
作者 Ming Li Shuqian Sun +4 位作者 Antonio Malacarne Sophie LaRochelle Jianping Yao Ninghua Zhu Jose Azana 《Science Bulletin》 SCIE EI CAS CSCD 2017年第4期242-248,共7页
We propose and demonstrate a reconfigurable and single-shot incoherent optical signal processing system for chirped microwave signal compression, using a programmable optical filter and a multiwavelength laser(MWL). T... We propose and demonstrate a reconfigurable and single-shot incoherent optical signal processing system for chirped microwave signal compression, using a programmable optical filter and a multiwavelength laser(MWL). The system is implemented by temporally modulating a specially shaped MWL followed by a suitable linear dispersive medium. A microwave dispersion value up to 1.33 ns/GHz over several GHz bandwidth is achieved based on this approach. Here we demonstrate a singleshot compression for different linearly chirped microwave signals over several GHz bandwidth. In addition, the robustness of the proposed system when input RF signals are largely distorted is also discussed. 展开更多
关键词 Fourier optics and signal processingAnalog optical signal processing Radio frequency photonics Pulse compression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部