Membrane Bio Reactor (MBR) has been designed and simulation for the treatment of Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), Total Organic Carbon (TOC), Total Dissolved Solid (TDS) and Oil/ Grease in p...Membrane Bio Reactor (MBR) has been designed and simulation for the treatment of Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), Total Organic Carbon (TOC), Total Dissolved Solid (TDS) and Oil/ Grease in produced water at a capacity of 54.1778 kg/hr for removal of 95%-99% contaminants. The MBR design equations were developed using the law of conservation of mass to determine the dimensions and functional parameters. The developed performance equations were integrated numerically using fourth-order Runge-Kutta embedded in MATLAB computer program to determine the optimum range of values of the reactor functional dimensions and functional parameters. The effect of rate of energy supply per reactor volume and substrate specific rate constant on the capacity of the membrane bioreactor were investigated. Also, the effect of initial loading of substrate on Solid Retention Time (SRT) was also investigated. Results showed that kinetic parameters influenced the percentage removal of contaminants as Hydraulic Retention Time (HRT) and size of MBR decreased with increase in specific rate constant at fixed conversion of contaminants. Also, HRT and MBR size increased as the conversion of Chemical Oxygen Demand (COD) was increased, while increased in the ratio of energy supplied per volume resulted in decreased of MBR volume. The effect of initial loading of substrate on SRT showed that increased in substrate loading increased the retention time of the solid at fixed substrate conversion, while the conversion of substrate to microorganism increased as the solid retention time was increased. The increased in initial loading of substrate concentration increased the production of Mixed Liquor Suspended Solids (MLSS). Thus, the size of MBR required for the conversion of the investigated contaminants at the design percentage removal increased in the following order: oil/grease 3;0.98 and 4.68 m;and 1.38 and 6.62 at 95% and 99% respectively, while the SRT was 82.67 days.展开更多
Optimizing the ventilation design of packaging system is of crucial importance for improving the efficiency of the forced-air precooling process to maintain the quality of horticultural produce and extend the shelf li...Optimizing the ventilation design of packaging system is of crucial importance for improving the efficiency of the forced-air precooling process to maintain the quality of horticultural produce and extend the shelf life in food cold chain.Many efforts had been devoted to the study about the impact of ventilation design on airflow and temperature distribution inside ventilated packages.This paper reviews relevant research methods,commonly used quantities for the measurement of precooling effectiveness,attractive design parameters,and their impact on precooling effectiveness.These allow us to know exactly the characteristic and deficiency of each research method,identify dominant design parameters,and seek a promising way for the future improvement of the ventilated packaging system.展开更多
文摘Membrane Bio Reactor (MBR) has been designed and simulation for the treatment of Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), Total Organic Carbon (TOC), Total Dissolved Solid (TDS) and Oil/ Grease in produced water at a capacity of 54.1778 kg/hr for removal of 95%-99% contaminants. The MBR design equations were developed using the law of conservation of mass to determine the dimensions and functional parameters. The developed performance equations were integrated numerically using fourth-order Runge-Kutta embedded in MATLAB computer program to determine the optimum range of values of the reactor functional dimensions and functional parameters. The effect of rate of energy supply per reactor volume and substrate specific rate constant on the capacity of the membrane bioreactor were investigated. Also, the effect of initial loading of substrate on Solid Retention Time (SRT) was also investigated. Results showed that kinetic parameters influenced the percentage removal of contaminants as Hydraulic Retention Time (HRT) and size of MBR decreased with increase in specific rate constant at fixed conversion of contaminants. Also, HRT and MBR size increased as the conversion of Chemical Oxygen Demand (COD) was increased, while increased in the ratio of energy supplied per volume resulted in decreased of MBR volume. The effect of initial loading of substrate on SRT showed that increased in substrate loading increased the retention time of the solid at fixed substrate conversion, while the conversion of substrate to microorganism increased as the solid retention time was increased. The increased in initial loading of substrate concentration increased the production of Mixed Liquor Suspended Solids (MLSS). Thus, the size of MBR required for the conversion of the investigated contaminants at the design percentage removal increased in the following order: oil/grease 3;0.98 and 4.68 m;and 1.38 and 6.62 at 95% and 99% respectively, while the SRT was 82.67 days.
基金This work is supported by the National Key R&D Program of China(Grant No.2016YFD0400100).
文摘Optimizing the ventilation design of packaging system is of crucial importance for improving the efficiency of the forced-air precooling process to maintain the quality of horticultural produce and extend the shelf life in food cold chain.Many efforts had been devoted to the study about the impact of ventilation design on airflow and temperature distribution inside ventilated packages.This paper reviews relevant research methods,commonly used quantities for the measurement of precooling effectiveness,attractive design parameters,and their impact on precooling effectiveness.These allow us to know exactly the characteristic and deficiency of each research method,identify dominant design parameters,and seek a promising way for the future improvement of the ventilated packaging system.