Cadmium (Cd) is an elemental heavy metal with widely recognized toxicity. Its long-term use in industrial processes and daily activities has caused alarming levels of Cd contamination in the natural environment. Acc...Cadmium (Cd) is an elemental heavy metal with widely recognized toxicity. Its long-term use in industrial processes and daily activities has caused alarming levels of Cd contamination in the natural environment. According to the estimates by the Agency of Toxic Substances and Disease Registry in the US, 25 000 to 30 000 metric tons of Cd is annually released to the environment . Results of previous studies have demonstrated that several organs are targets of Cd, but the most important of these targeted organs may be the testes.展开更多
Phosphatidylglycerol (PG) an important membrane phospholipid required for the synthesis of diphos-phatidylglycerol (DPG) commonly known as cardiolipin (CL) was identified in the fraction of endo-plasmic reticulum (ER)...Phosphatidylglycerol (PG) an important membrane phospholipid required for the synthesis of diphos-phatidylglycerol (DPG) commonly known as cardiolipin (CL) was identified in the fraction of endo-plasmic reticulum (ER)-derived transport vesicles which had no affinity for Golgi. The vesicles were produced in the presence of Brefeldin A (BFA), the agent known to inhibit ER-Golgi transport, and found to display affinity to mitochondria. The analysis revealed that their cargo was not containing proteins that are transported to Golgi, and that their membrane was free of phosphatidylinositol (PI) and ceramides (Cer). The incubation of PG-containing transport vesicles with mitochondria afforded incorporation of their membrane into the Outer Mito-chondrial Membrane (OMM) and formation of lyso-phosphatidylglycerol (LPG). In turn, upon further incubation with fresh transport active cytosol, the mitochondrial LPG was converted to PG. The results of analysis of the OMM, Inner Mitochondrial Mem-brane (IMM) and Inner Mitochondrial Space Components (IMSC) strongly suggest that PG-containing transport vesicles deliver nuclear DNA translation products to the IMSC and thus facilitate CL synthesis in the IMM. In summary, our studies provide evidence that ER-generated PG-enriched transport vesicles represent the general pathway for restitution of mitochondrial membranes and the delivery of nuclear DNA translation products that generate CL, and thus sustain the mitochondrial matrix CL-dependent metabolic reactions.展开更多
基金supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(No.08KJD230002)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Cadmium (Cd) is an elemental heavy metal with widely recognized toxicity. Its long-term use in industrial processes and daily activities has caused alarming levels of Cd contamination in the natural environment. According to the estimates by the Agency of Toxic Substances and Disease Registry in the US, 25 000 to 30 000 metric tons of Cd is annually released to the environment . Results of previous studies have demonstrated that several organs are targets of Cd, but the most important of these targeted organs may be the testes.
文摘Phosphatidylglycerol (PG) an important membrane phospholipid required for the synthesis of diphos-phatidylglycerol (DPG) commonly known as cardiolipin (CL) was identified in the fraction of endo-plasmic reticulum (ER)-derived transport vesicles which had no affinity for Golgi. The vesicles were produced in the presence of Brefeldin A (BFA), the agent known to inhibit ER-Golgi transport, and found to display affinity to mitochondria. The analysis revealed that their cargo was not containing proteins that are transported to Golgi, and that their membrane was free of phosphatidylinositol (PI) and ceramides (Cer). The incubation of PG-containing transport vesicles with mitochondria afforded incorporation of their membrane into the Outer Mito-chondrial Membrane (OMM) and formation of lyso-phosphatidylglycerol (LPG). In turn, upon further incubation with fresh transport active cytosol, the mitochondrial LPG was converted to PG. The results of analysis of the OMM, Inner Mitochondrial Mem-brane (IMM) and Inner Mitochondrial Space Components (IMSC) strongly suggest that PG-containing transport vesicles deliver nuclear DNA translation products to the IMSC and thus facilitate CL synthesis in the IMM. In summary, our studies provide evidence that ER-generated PG-enriched transport vesicles represent the general pathway for restitution of mitochondrial membranes and the delivery of nuclear DNA translation products that generate CL, and thus sustain the mitochondrial matrix CL-dependent metabolic reactions.