When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency...When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency of the existing design theory, according to the performance features of complex mechanical products, the performance indices are introduced into the traditional design theory of "Requirement-Function-Structure" to construct a new five-domain design theory of "Client Requirement-Function-Performance-Structure-Design Parameter". To support design practice based on this new theory, a product data model is established by using per- formance indices and the mapping relationship between them and the other four domains. When the product data model is applied to high-speed train design and combining the existing research result and relevant standards, the corresponding data model and its structure involving five domains of high-speed trains are established, which can provide technical support for studying the relationships between typical performance indices and design parame- ters and the fast achievement of a high-speed train scheme design. The five domains provide a reference for the design specification and evaluation criteria of high speed train and a new idea for the train's parameter design.展开更多
Software development is a complex and difficult task that requires the investment of sufficient resources and carries major risk of failure. Model Driven Engineering (MDE) focuses on creating software models and autom...Software development is a complex and difficult task that requires the investment of sufficient resources and carries major risk of failure. Model Driven Engineering (MDE) focuses on creating software models and automating code generation from the models. Model Driven Software Development (MDSD) offers significantly more effective approaches. These approaches improve the way of building software. Model driven approaches partially increase developer productivity, decrease the cost of software construction, improve software reusability, and make software more maintainable. This paper investigates the methods where Model Driven Software Development is integrated with Software Product Line (SPL). This SLR has been conducted to identify 71 research works published since 2014. We have collected 18 tools, 14 techniques and 17 languages used for MDSD for SPL. We analyze which technique is suitable for SPL. We compare the techniques on the basis of features provided by these tools to understand the better-quality results.展开更多
由于页岩气渗流机理复杂,赋存方式多样,压裂后对裂缝网络的精确识别和表征存在较大困难,现有方法难以准确预测页岩气井产量。为此,提出了机理—数据融合建模的思路,结合连续拟稳态假设、物质平衡方程、产量递减分析方法和递推原理,建立...由于页岩气渗流机理复杂,赋存方式多样,压裂后对裂缝网络的精确识别和表征存在较大困难,现有方法难以准确预测页岩气井产量。为此,提出了机理—数据融合建模的思路,结合连续拟稳态假设、物质平衡方程、产量递减分析方法和递推原理,建立了物理—数据协同驱动的产量预测方法,进而以中国某区块页岩气井现场生产数据为例,对该方法的准确性、可靠性进行了测试,并与经验产量递减分析和时间序列分析方法进行了对比分析。研究结果表明:(1)建立的产能模型采用拟压力代替压力,采用物质平衡拟时间代替时间,弱化了产量、流压和甲烷物性变化带来的影响;(2)以累计产量误差最小为目标开展历史拟合,弱化了生产制度变化带来的影响,使得建立的产能模型能够自动适应流压—产量变化;(3)应用该方法的关键在于采气指数—物质平衡拟时间双对数图中的特征直线,若图中出现特征直线,则可以开展产量预测,反之,则不能预测。结论认为:(1)建立的产量预测方法将不稳定流动问题转化为拟稳态流动问题求解,简化了对储层非均质性的描述,避开了裂缝网络精确识别和定量表征的难题,计算效率高,可解释性强;(2)生产数据测试结果表明该产量预测方法精度高,长期预测结果稳定,并优于Logistic Growth Model、Duong和StretchedExponential Production Decline经验产量递减分析方法,也优于非线性自回归神经网络、长短记忆神经网络时间序列分析方法。展开更多
This paper analyses the integration modes of the virtual product development with KBE. The system architecture of virtual product development with KBE has been built and the key technique has been studied to support t...This paper analyses the integration modes of the virtual product development with KBE. The system architecture of virtual product development with KBE has been built and the key technique has been studied to support the system. Knowledge driven method has been put forward based on the traditional theory as a new method of virtual product development. An applied case is presented by taking moving cone assembly as an example to illustrate the process of knowledge driven method in detail. This concludes virtual product development integrated with KBE is feasible to raise the design efficiency and promote the sharing of information and knowledge.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51275432,51505390)Sichuan Application Foundation Projects(Grant No.2016JY0098)Independent Research Project of TPL(Grant No.TPL1501)
文摘When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency of the existing design theory, according to the performance features of complex mechanical products, the performance indices are introduced into the traditional design theory of "Requirement-Function-Structure" to construct a new five-domain design theory of "Client Requirement-Function-Performance-Structure-Design Parameter". To support design practice based on this new theory, a product data model is established by using per- formance indices and the mapping relationship between them and the other four domains. When the product data model is applied to high-speed train design and combining the existing research result and relevant standards, the corresponding data model and its structure involving five domains of high-speed trains are established, which can provide technical support for studying the relationships between typical performance indices and design parame- ters and the fast achievement of a high-speed train scheme design. The five domains provide a reference for the design specification and evaluation criteria of high speed train and a new idea for the train's parameter design.
文摘Software development is a complex and difficult task that requires the investment of sufficient resources and carries major risk of failure. Model Driven Engineering (MDE) focuses on creating software models and automating code generation from the models. Model Driven Software Development (MDSD) offers significantly more effective approaches. These approaches improve the way of building software. Model driven approaches partially increase developer productivity, decrease the cost of software construction, improve software reusability, and make software more maintainable. This paper investigates the methods where Model Driven Software Development is integrated with Software Product Line (SPL). This SLR has been conducted to identify 71 research works published since 2014. We have collected 18 tools, 14 techniques and 17 languages used for MDSD for SPL. We analyze which technique is suitable for SPL. We compare the techniques on the basis of features provided by these tools to understand the better-quality results.
文摘由于页岩气渗流机理复杂,赋存方式多样,压裂后对裂缝网络的精确识别和表征存在较大困难,现有方法难以准确预测页岩气井产量。为此,提出了机理—数据融合建模的思路,结合连续拟稳态假设、物质平衡方程、产量递减分析方法和递推原理,建立了物理—数据协同驱动的产量预测方法,进而以中国某区块页岩气井现场生产数据为例,对该方法的准确性、可靠性进行了测试,并与经验产量递减分析和时间序列分析方法进行了对比分析。研究结果表明:(1)建立的产能模型采用拟压力代替压力,采用物质平衡拟时间代替时间,弱化了产量、流压和甲烷物性变化带来的影响;(2)以累计产量误差最小为目标开展历史拟合,弱化了生产制度变化带来的影响,使得建立的产能模型能够自动适应流压—产量变化;(3)应用该方法的关键在于采气指数—物质平衡拟时间双对数图中的特征直线,若图中出现特征直线,则可以开展产量预测,反之,则不能预测。结论认为:(1)建立的产量预测方法将不稳定流动问题转化为拟稳态流动问题求解,简化了对储层非均质性的描述,避开了裂缝网络精确识别和定量表征的难题,计算效率高,可解释性强;(2)生产数据测试结果表明该产量预测方法精度高,长期预测结果稳定,并优于Logistic Growth Model、Duong和StretchedExponential Production Decline经验产量递减分析方法,也优于非线性自回归神经网络、长短记忆神经网络时间序列分析方法。
基金Supported by the Grand Science & Technology Program,Shanghai ,China .(No.025115007)
文摘This paper analyses the integration modes of the virtual product development with KBE. The system architecture of virtual product development with KBE has been built and the key technique has been studied to support the system. Knowledge driven method has been put forward based on the traditional theory as a new method of virtual product development. An applied case is presented by taking moving cone assembly as an example to illustrate the process of knowledge driven method in detail. This concludes virtual product development integrated with KBE is feasible to raise the design efficiency and promote the sharing of information and knowledge.