Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current...Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current research on the durability of proton exchange membrane electrolyzers is insufficient.Studying the typical operating conditions of wind power electrolysis for hydrogen production can provide boundary conditions for performance and degradation tests of electrolysis stacks.In this study,the operating condition spectrum of an electrolysis stack degradation test cycle was proposed.Based on the rate of change of the wind farm output power and the time-averaged peak-valley difference,a fluctuation output power sample set was formed.The characteristic quantities that played an important role in the degradation of the electrolysis stack were selected.Dimensionality reduction of the operating data was performed using principal component analysis.Clustering analysis of the data segments was completed using an improved Gaussian mixture clustering algorithm.Taking the annual output power data of wind farms in Northwest China with a sampling rate of 1 min as an example,the cyclic operating condition spectrum of the proton-exchange membrane electrolysis stack degradation test was constructed.After preliminary simulation analysis,the typical operating condition proposed in this paper effectively reflects the impact of the original curve on the performance degradation of the electrolysis stack.This study provides a method for evaluating the degradation characteristics and system efficiency of an electrolysis stack due to fluctuations in renewable energy.展开更多
Demand response(DR) is gaining more and more importance in the architecture of power systems in a context of flexible loads and high share of intermittent generation. Changes in electricity markets regulation in sever...Demand response(DR) is gaining more and more importance in the architecture of power systems in a context of flexible loads and high share of intermittent generation. Changes in electricity markets regulation in several countries have recently enabled an effective integration of DR mechanisms in power systems. Through its flexible components(pumps, tanks), drinking water systems are suitable candidates for energy-efficient DR mechanisms. However, these systems are often managed independently of power system operation for both economic and operational reasons. Indeed, a sufficient level of economic viability and water demands risk management are necessary for water utilities to integrate their flexibilities to power system operation. In this paper,we proposed a mathematical model for optimizing pump schedules in water systems while trading DR blocs in a spot power market during peak times. Uncertainties about water demands were considered in the mathematical model allowing to propose power reductions covering the potential risk of real-time water demand forecasting inaccuracy.Numerical results were discussed on a real water system in France, demonstrating both economic and ecological benefits.展开更多
This paper presents the results of a recent major industry-supported study with the aim to provide power system operators with more meaningful and effective means to quickly identify feasible operating boundaries as w...This paper presents the results of a recent major industry-supported study with the aim to provide power system operators with more meaningful and effective means to quickly identify feasible operating boundaries as well as more flexibility to select alternate operating scenarios. In this regard, the paper outlines the main theoretical basis and computational framework for the development of innovative computerized schemes capable of identifying and processing various system integrity domains. The novel framework allows system operators to determine – in a fast and reliable manner – the most favorable operating scenarios which maintain system security, reliability and operating performance quality. For demonstration purposes, and without loss of generality, an emphasis is given to the dynamic system security problem where the Transient Energy Function (TEF) method is used to define quantitative measures of the level (degree) of system security for a given operating scenario. Nonetheless, the framework presented is applicable quite as well to other system performance functions and criteria that may be considered. A demonstrative application is presented for a 9-bus benchmark system, widely used in the literature. In addition, a practical application is also presented for the Saudi Electricity Company (SEC) power system where the operating security domain was evaluated in the operating parameter space spanned by two major interface flows in the system.展开更多
A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy ...A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy produced by hydroelectric plants and coal-fired plants is divided into 4 components: potential energy, kinetic energy, water-deep pressure energy and reservoir energy. A new and important concept, reservoir energy, is proposed, based on which is divided into a number of water bodies, for example 3 water bodies, and a reservoir is analyzed in a new way. This paper presents an optimal scheduling solution of elec-tric energy production of hydro-thermal power systems based on multi-factors analytic method, in which some important factors, such as load demand, reservoir in-flow, water consumption volume increment rate of hydroelectric plants or converted from coal-fired plants, and so on are given to model the objective function and the constraints. A study example with three simulation cases is carried out to illustrate flexibility, adapta-bility, applicability of the proposed method.展开更多
The results of research into the use of fuzzy set based models and methods of multicriteria decision making for solving power engineering problems are presented. Two general classes of models related to multiobjective...The results of research into the use of fuzzy set based models and methods of multicriteria decision making for solving power engineering problems are presented. Two general classes of models related to multiobjective (X,M> models) and multiattribute (X,R> models) problems are considered. The analysisX,M> of models is based on the use of the Bellman-Zadeh approach to decision making in a fuzzy environment. Its application conforms to the principle of guaranteed result and provides constructive lines in obtaining harmonious solutions on the basis of analyzing associated maxmin problems. Several techniques based on fuzzy preference modeling are considered for the analysis of?X,R> models. A review of the authors’ results associated with the application of these models and methods for solving diverse types of problems of power system and subsystems planning and operation is presented. The recent results on the use ofX,M> andX,R> models and methods of their analysis for the allocation of reactive power sources in distribution systems and for the prioritization in maintenance planning in distribution systems, respectively, are considered.展开更多
This paper is devoted to development and study of models for operator training systems of heating power station processes management. It proposed a mathematical model describing the management processes of heating pow...This paper is devoted to development and study of models for operator training systems of heating power station processes management. It proposed a mathematical model describing the management processes of heating power units of the technological complex considering the relationship of technological variables in deviations effective in real time. A software complex is developed for the system of training of operators controlling processes in heating station units. Obtained results may be used in the course of development of computer training systems for operators of heating power stations with cross-linkage.展开更多
A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architectu...A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.展开更多
An approach of training working staff of power system operation mode based on state evaluation is proposed. In terms of knowledge features of power system operation mode, we studied a training method based on evaluati...An approach of training working staff of power system operation mode based on state evaluation is proposed. In terms of knowledge features of power system operation mode, we studied a training method based on evaluation of learning state. This training method makes individual learning for different individual condition to give them ability to grasp learning points quickly, evaluate real-time learning effect, update learning style in time and summarize problems after one learning stage, so that learners can master professional knowledge in constant summaries and feedbacks. Obvious effects can be obtained on discontinuous learning time that trainees can master basic theories associated with their working and operations adapted to practical work quickly.展开更多
In this paper a new market based analytical model is proposed for optimal placement of Wind Turbines (WTs) in power systems. In addition to wind turbines, thermal units (THUs) and Pumped Storage Hydro Power Plants (PS...In this paper a new market based analytical model is proposed for optimal placement of Wind Turbines (WTs) in power systems. In addition to wind turbines, thermal units (THUs) and Pumped Storage Hydro Power Plants (PSHPPs) owners participate in power market. Objective function is defined as participants’ social welfare achieved from power pool and ancillary markets in yearly horizon. Wind turbines have been modeled by probability-generation tree scenarios based on statistical information. We concentrate on investment profits of WTs numbers and its generation capacity beside to PSHPPs and THUs power plants in power systems due to increase in high flexible tools for Independent system operator into the planning and operation planning time interval. For effectiveness evaluation of proposed model, simulation studies are applied on 14-Bus IEEE test power system.展开更多
We consider a power system whose electric demand pertaining to freshwater production is high(high freshwater electric demand),as in the Middle East,and investigate the tradeoff of storing freshwater in tanks versus st...We consider a power system whose electric demand pertaining to freshwater production is high(high freshwater electric demand),as in the Middle East,and investigate the tradeoff of storing freshwater in tanks versus storing electricity in batteries at the day-ahead operation stage.Both storing freshwater and storing electricity increase the actual electric demand at valley hours and decrease it at peak hours,which is generally beneficial in term of cost and reliability.But,to what extent?We analyze this question considering three power systems with different generation-mix configurations,i.e.,a thermal-dominated mix,a renewable-dominated one,and a fully renewable one.These generation-mix configurations are inspired by how power systems may evolve in different countries in the Middle East.Renewable production uncertainty is compactly modeled using chance constraints.We draw conclusions on how both storage facilities(freshwater and electricity)complement each other to render an optimal operation of the power system.展开更多
The purpose of this review is to summarise the existing literature on the operational systems as to explain the current state of understanding on the coupled operational systems.The review only considers the linear op...The purpose of this review is to summarise the existing literature on the operational systems as to explain the current state of understanding on the coupled operational systems.The review only considers the linear optimisation of the operational systems.Traditionally,the operational systems are classified as decoupled,tightly coupled,and loosely coupled.Lately,the coupled operational systems were classified as systems of time-sensitive and time-insensitive operational cycle,systems employing one mix and different mixes of factors of production,and systems of single-linear,single-linear-fractional,and multi-linear objective.These new classifications extend the knowledge about the linear optimisation of the coupled operational systems and reveal new objective-improving models and new state-of-the-art methodologies never discussed before.Business areas affected by these extensions include product assembly lines,cooperative farming,gas/oil reservoir development,maintenance service throughout multiple facilities,construction via different locations,flights traffic control in aviation,game reserves,and tramp shipping in maritime cargo transport.展开更多
With the development of power systems, power grid within a control area becomes much more complicated due to increasing number of nodes and renewable energy interconnections. The role of power system control center is...With the development of power systems, power grid within a control area becomes much more complicated due to increasing number of nodes and renewable energy interconnections. The role of power system control center is more critical in maintaining system reliable and security operations. Latest developed information and communication technologies provide a platform to enhance the functions and performance of power system control center. Smart power dispatch concept will be the trend of future control center development. In this paper, we start from the human factors of control center design and propose operation indices to reduce the information presented to the system operator. The operation indices will be the important criteria in situation awareness of a power grid. Past, present, future and capability states of a power grid are also proposed to provide better visions to the operator of system conditions. The basic ideas of operation indices and operation states are discussed in the paper. In the end, the design factors for a power dispatch cockpit are discussed.展开更多
The penetration of wind power into global electric power systems is steadily increasing, with the possibility of 30% to 80% of electrical energy coming from wind within the coming decades. At penetrations below 10% of...The penetration of wind power into global electric power systems is steadily increasing, with the possibility of 30% to 80% of electrical energy coming from wind within the coming decades. At penetrations below 10% of electricity from wind, the impact of this variable resource on power system operations is manageable with historical operating strategies. As this penetration increases, new methods for operating the power system and electricity markets need to be developed. As part of this process, the expected impact of increased wind penetration needs to be better understood and quantified. This paper presents a comprehensive modeling framework, combining optimal power flow with Monte Carlo simulations used to quantify the impact of high levels of wind power generation in the power system. The impact on power system performance is analyzed in terms of generator dispatch patterns, electricity price and its standard deviation, CO2 emissions and amount of wind power spilled. Simulations with 10%, 20% and 30% wind penetration are analyzed for the IEEE 39 bus test system, with input data representing the New England region. Results show that wind power predominantly displaces natural gas fired generation across all scenarios. The inclusion of increasing amounts of wind can result in price spike events, as the system is required to dispatch down expensive demand in order to maintain the energy balance. These events are shown to be mitigated by the inclusion of demand response resources. Benefits include significant reductions in CO2 emissions, up to 75% reductions at 30% wind penetration, as compared to emissions with no wind integration.展开更多
Hydrogen energy,with its abundant reserves,green and low-carbon characteristic,high energy density,diverse sources,and wide applications,is gradually becoming an important carrier in the global energy transformation a...Hydrogen energy,with its abundant reserves,green and low-carbon characteristic,high energy density,diverse sources,and wide applications,is gradually becoming an important carrier in the global energy transformation and development.In this paper,the off-grid wind power hydrogen production system is considered as the research object,and the operating characteristics of a proton exchange membrane(PEM)electrolysis cell,including underload,overload,variable load,and start-stop are analyzed.On this basis,the characteristic extraction of wind power output data after noise reduction is carried out,and then the self-organizing mapping neural network algorithm is used for clustering to extract typical wind power output scenarios and perform weight distribution based on the statistical probability.The trend and fluctuation components are superimposed to generate the typical operating conditions of an off-grid PEM electrolytic hydrogen production system.The historical output data of an actual wind farm are used for the case study,and the results confirm the feasibility of the method proposed in this study for obtaining the typical conditions of off-grid wind power hydrogen production.The results provide a basis for studying the dynamic operation characteristics of PEM electrolytic hydrogen production systems,and the performance degradation mechanism of PEM electrolysis cells under fluctuating inputs.展开更多
基金supported by the National Key Research and Development Program of China(Materials and Process Basis of Electrolytic Hydrogen Production from Fluctuating Power Sources such as Photovoltaic/Wind Power,No.2021YFB4000100).
文摘Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current research on the durability of proton exchange membrane electrolyzers is insufficient.Studying the typical operating conditions of wind power electrolysis for hydrogen production can provide boundary conditions for performance and degradation tests of electrolysis stacks.In this study,the operating condition spectrum of an electrolysis stack degradation test cycle was proposed.Based on the rate of change of the wind farm output power and the time-averaged peak-valley difference,a fluctuation output power sample set was formed.The characteristic quantities that played an important role in the degradation of the electrolysis stack were selected.Dimensionality reduction of the operating data was performed using principal component analysis.Clustering analysis of the data segments was completed using an improved Gaussian mixture clustering algorithm.Taking the annual output power data of wind farms in Northwest China with a sampling rate of 1 min as an example,the cyclic operating condition spectrum of the proton-exchange membrane electrolysis stack degradation test was constructed.After preliminary simulation analysis,the typical operating condition proposed in this paper effectively reflects the impact of the original curve on the performance degradation of the electrolysis stack.This study provides a method for evaluating the degradation characteristics and system efficiency of an electrolysis stack due to fluctuations in renewable energy.
文摘Demand response(DR) is gaining more and more importance in the architecture of power systems in a context of flexible loads and high share of intermittent generation. Changes in electricity markets regulation in several countries have recently enabled an effective integration of DR mechanisms in power systems. Through its flexible components(pumps, tanks), drinking water systems are suitable candidates for energy-efficient DR mechanisms. However, these systems are often managed independently of power system operation for both economic and operational reasons. Indeed, a sufficient level of economic viability and water demands risk management are necessary for water utilities to integrate their flexibilities to power system operation. In this paper,we proposed a mathematical model for optimizing pump schedules in water systems while trading DR blocs in a spot power market during peak times. Uncertainties about water demands were considered in the mathematical model allowing to propose power reductions covering the potential risk of real-time water demand forecasting inaccuracy.Numerical results were discussed on a real water system in France, demonstrating both economic and ecological benefits.
文摘This paper presents the results of a recent major industry-supported study with the aim to provide power system operators with more meaningful and effective means to quickly identify feasible operating boundaries as well as more flexibility to select alternate operating scenarios. In this regard, the paper outlines the main theoretical basis and computational framework for the development of innovative computerized schemes capable of identifying and processing various system integrity domains. The novel framework allows system operators to determine – in a fast and reliable manner – the most favorable operating scenarios which maintain system security, reliability and operating performance quality. For demonstration purposes, and without loss of generality, an emphasis is given to the dynamic system security problem where the Transient Energy Function (TEF) method is used to define quantitative measures of the level (degree) of system security for a given operating scenario. Nonetheless, the framework presented is applicable quite as well to other system performance functions and criteria that may be considered. A demonstrative application is presented for a 9-bus benchmark system, widely used in the literature. In addition, a practical application is also presented for the Saudi Electricity Company (SEC) power system where the operating security domain was evaluated in the operating parameter space spanned by two major interface flows in the system.
文摘A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy produced by hydroelectric plants and coal-fired plants is divided into 4 components: potential energy, kinetic energy, water-deep pressure energy and reservoir energy. A new and important concept, reservoir energy, is proposed, based on which is divided into a number of water bodies, for example 3 water bodies, and a reservoir is analyzed in a new way. This paper presents an optimal scheduling solution of elec-tric energy production of hydro-thermal power systems based on multi-factors analytic method, in which some important factors, such as load demand, reservoir in-flow, water consumption volume increment rate of hydroelectric plants or converted from coal-fired plants, and so on are given to model the objective function and the constraints. A study example with three simulation cases is carried out to illustrate flexibility, adapta-bility, applicability of the proposed method.
文摘The results of research into the use of fuzzy set based models and methods of multicriteria decision making for solving power engineering problems are presented. Two general classes of models related to multiobjective (X,M> models) and multiattribute (X,R> models) problems are considered. The analysisX,M> of models is based on the use of the Bellman-Zadeh approach to decision making in a fuzzy environment. Its application conforms to the principle of guaranteed result and provides constructive lines in obtaining harmonious solutions on the basis of analyzing associated maxmin problems. Several techniques based on fuzzy preference modeling are considered for the analysis of?X,R> models. A review of the authors’ results associated with the application of these models and methods for solving diverse types of problems of power system and subsystems planning and operation is presented. The recent results on the use ofX,M> andX,R> models and methods of their analysis for the allocation of reactive power sources in distribution systems and for the prioritization in maintenance planning in distribution systems, respectively, are considered.
文摘This paper is devoted to development and study of models for operator training systems of heating power station processes management. It proposed a mathematical model describing the management processes of heating power units of the technological complex considering the relationship of technological variables in deviations effective in real time. A software complex is developed for the system of training of operators controlling processes in heating station units. Obtained results may be used in the course of development of computer training systems for operators of heating power stations with cross-linkage.
基金Sponsored by the National Natural Science Foundation of China (60843005)the Basic Research Foundation of Beijing Institute of Technology(20070142018)
文摘A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.
文摘An approach of training working staff of power system operation mode based on state evaluation is proposed. In terms of knowledge features of power system operation mode, we studied a training method based on evaluation of learning state. This training method makes individual learning for different individual condition to give them ability to grasp learning points quickly, evaluate real-time learning effect, update learning style in time and summarize problems after one learning stage, so that learners can master professional knowledge in constant summaries and feedbacks. Obvious effects can be obtained on discontinuous learning time that trainees can master basic theories associated with their working and operations adapted to practical work quickly.
文摘In this paper a new market based analytical model is proposed for optimal placement of Wind Turbines (WTs) in power systems. In addition to wind turbines, thermal units (THUs) and Pumped Storage Hydro Power Plants (PSHPPs) owners participate in power market. Objective function is defined as participants’ social welfare achieved from power pool and ancillary markets in yearly horizon. Wind turbines have been modeled by probability-generation tree scenarios based on statistical information. We concentrate on investment profits of WTs numbers and its generation capacity beside to PSHPPs and THUs power plants in power systems due to increase in high flexible tools for Independent system operator into the planning and operation planning time interval. For effectiveness evaluation of proposed model, simulation studies are applied on 14-Bus IEEE test power system.
文摘We consider a power system whose electric demand pertaining to freshwater production is high(high freshwater electric demand),as in the Middle East,and investigate the tradeoff of storing freshwater in tanks versus storing electricity in batteries at the day-ahead operation stage.Both storing freshwater and storing electricity increase the actual electric demand at valley hours and decrease it at peak hours,which is generally beneficial in term of cost and reliability.But,to what extent?We analyze this question considering three power systems with different generation-mix configurations,i.e.,a thermal-dominated mix,a renewable-dominated one,and a fully renewable one.These generation-mix configurations are inspired by how power systems may evolve in different countries in the Middle East.Renewable production uncertainty is compactly modeled using chance constraints.We draw conclusions on how both storage facilities(freshwater and electricity)complement each other to render an optimal operation of the power system.
文摘The purpose of this review is to summarise the existing literature on the operational systems as to explain the current state of understanding on the coupled operational systems.The review only considers the linear optimisation of the operational systems.Traditionally,the operational systems are classified as decoupled,tightly coupled,and loosely coupled.Lately,the coupled operational systems were classified as systems of time-sensitive and time-insensitive operational cycle,systems employing one mix and different mixes of factors of production,and systems of single-linear,single-linear-fractional,and multi-linear objective.These new classifications extend the knowledge about the linear optimisation of the coupled operational systems and reveal new objective-improving models and new state-of-the-art methodologies never discussed before.Business areas affected by these extensions include product assembly lines,cooperative farming,gas/oil reservoir development,maintenance service throughout multiple facilities,construction via different locations,flights traffic control in aviation,game reserves,and tramp shipping in maritime cargo transport.
文摘With the development of power systems, power grid within a control area becomes much more complicated due to increasing number of nodes and renewable energy interconnections. The role of power system control center is more critical in maintaining system reliable and security operations. Latest developed information and communication technologies provide a platform to enhance the functions and performance of power system control center. Smart power dispatch concept will be the trend of future control center development. In this paper, we start from the human factors of control center design and propose operation indices to reduce the information presented to the system operator. The operation indices will be the important criteria in situation awareness of a power grid. Past, present, future and capability states of a power grid are also proposed to provide better visions to the operator of system conditions. The basic ideas of operation indices and operation states are discussed in the paper. In the end, the design factors for a power dispatch cockpit are discussed.
文摘The penetration of wind power into global electric power systems is steadily increasing, with the possibility of 30% to 80% of electrical energy coming from wind within the coming decades. At penetrations below 10% of electricity from wind, the impact of this variable resource on power system operations is manageable with historical operating strategies. As this penetration increases, new methods for operating the power system and electricity markets need to be developed. As part of this process, the expected impact of increased wind penetration needs to be better understood and quantified. This paper presents a comprehensive modeling framework, combining optimal power flow with Monte Carlo simulations used to quantify the impact of high levels of wind power generation in the power system. The impact on power system performance is analyzed in terms of generator dispatch patterns, electricity price and its standard deviation, CO2 emissions and amount of wind power spilled. Simulations with 10%, 20% and 30% wind penetration are analyzed for the IEEE 39 bus test system, with input data representing the New England region. Results show that wind power predominantly displaces natural gas fired generation across all scenarios. The inclusion of increasing amounts of wind can result in price spike events, as the system is required to dispatch down expensive demand in order to maintain the energy balance. These events are shown to be mitigated by the inclusion of demand response resources. Benefits include significant reductions in CO2 emissions, up to 75% reductions at 30% wind penetration, as compared to emissions with no wind integration.
基金supported by the National Key Research and Development Program of China(Program Number 2021YFB4000100)the Beijing Postdoctoral Research Foundation(Grant Number 2023-ZZ-63).
文摘Hydrogen energy,with its abundant reserves,green and low-carbon characteristic,high energy density,diverse sources,and wide applications,is gradually becoming an important carrier in the global energy transformation and development.In this paper,the off-grid wind power hydrogen production system is considered as the research object,and the operating characteristics of a proton exchange membrane(PEM)electrolysis cell,including underload,overload,variable load,and start-stop are analyzed.On this basis,the characteristic extraction of wind power output data after noise reduction is carried out,and then the self-organizing mapping neural network algorithm is used for clustering to extract typical wind power output scenarios and perform weight distribution based on the statistical probability.The trend and fluctuation components are superimposed to generate the typical operating conditions of an off-grid PEM electrolytic hydrogen production system.The historical output data of an actual wind farm are used for the case study,and the results confirm the feasibility of the method proposed in this study for obtaining the typical conditions of off-grid wind power hydrogen production.The results provide a basis for studying the dynamic operation characteristics of PEM electrolytic hydrogen production systems,and the performance degradation mechanism of PEM electrolysis cells under fluctuating inputs.