Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy...Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.展开更多
The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extract...The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extracted from lunar regolith,which is highly rich in oxygen and contains polymetallic oxides.This oxygen and metal extraction can be achieved using existing metallurgical techniques.Furthermore,the ample reserves of water ice on the Moon offer another means for oxygen production.This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon,drawing from an analysis of lunar resources and environmental conditions.It delves into the principles,processes,advantages,and drawbacks of water-ice electrolysis,two-step oxygen production from lunar regolith,and one-step oxygen production from lunar regolith.The two-step methods involve hydrogen reduction,carbothermal reduction,and hydrometallurgy,while the one-step methods encompass fluorination/chlorination,high-temperature decomposition,molten salt electrolysis,and molten regolith electrolysis(MOE).Following a thorough comparison of raw materials,equipment,technology,and economic viability,MOE is identified as the most promising approach for future in-situ oxygen production on the Moon.Considering the corrosion characteristics of molten lunar regolith at high temperatures,along with the Moon's low-gravity environment,the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon.This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives.展开更多
Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2) production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study...Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2) production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study reports Ir-doped NiFe_(2)O_(4)(NFI,~5 at%Ir)spinel layer with TiO_(2) overlayer(NFI/TiO_(2)),as a scalable heterojunction anode for direct electrolysis of wastewater with circumneutral pH in a single-compartment cell.In dilute(0.1 M)NaCl solutions,the NFI/TiO_(2) marks superior activity and selectivity for chlorine evolution reaction,outperforming the benchmark IrO_(2).Robust operation in near-neutral pH was confirmed.Electroanalyses including operando X-ray absorption spectroscopy unveiled crucial roles of TiO_(2) which serves both as the primary site for Cl−chemisorption and a protective layer for NFI as an ohmic contact.Galvanostatic electrolysis of NH4+-laden synthetic wastewater demonstrated that NFI/TiO_(2)not only achieves quasi-stoichiometric NH_(4)^(+)-to-N_(2)conversion,but also enhances H_(2)generation efficiency with minimal competing reactions such as reduction of dissolved oxygen and reactive chlorine.The scaled-up WEC with NFI/TiO_(2)was demonstrated for electrolysis of toilet wastewater.展开更多
To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals l...To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals like Cd and Pb in solid waste in mining areas and across the water body,sediment,soil and agricultural product ecosystem surrounding the mining areas.Focusing on the residual solid waste samples in lead-zinc deposits in a certain area of Guizhou Province,along with samples of topsoils,irrigation water,river sediments,and crops from surrounding areas.This study analyzed the distributions of eight heavy metals,i.e.,Cd,As,Cr,Hg,Pb,Zn,Cu,and Ni,in the samples through field surveys and sample tests.Furthermore,this study assessed the contamination levels and ecological risks of heavy metals in soils,sediments,and agricultural products using methods such as the single-factor index,Nemerow composite index,and potential ecological risk assessment.The results indicate that heavy metals in the solid waste samples all exhibited concentrations exceeding their risk screening values,with 60%greater than their risk intervention values.The soils and sediments demonstrate slight and moderate comprehensive ecological risks of heavy metals.The single-factor potential ecological risks of heavy metals in both the soil and sediment samples decreased in the order of Hg,Cd,Pb,As,Cu,Zn,Cr,and Ni,suggesting the same sources of heavy metals in the soils and sediments.Most of the agricultural product samples exhibited over-limit concentrations of heavy metals dominated by Cd,Pb,Ni,and Cr,excluding Hg and As.The agricultural product assessment using the Nemerow composite index reveals that 35%of the agricultural product samples reached the heavy metal contamination level,implying that the agricultural products from farmland around the solid waste dumps have been contaminated with heavy metals.The eight heavy metals in the soil,sediment,and agricultural product samples manifested high coefficients of variation(CVs),indicating pronounced spatial variability.This suggests that their concentrations in soils,sediments,and agricultural products are significantly influenced by human mining activities.Additionally,the agricultural products exhibit strong transport and accumulation capacities for Cd,Cu,and Zn.展开更多
AIM:To elucidate the neuropathological mechanisms underlying diabetic vitreous hemorrhage(DVH)and its correlation with clinical characteristics.METHODS:Twenty-one individuals with DVH(male/female 12/9;mean age 52.29...AIM:To elucidate the neuropathological mechanisms underlying diabetic vitreous hemorrhage(DVH)and its correlation with clinical characteristics.METHODS:Twenty-one individuals with DVH(male/female 12/9;mean age 52.29±11.66y)were selected,alongside 21 appropriately matched controls with diabetes mellitus(DM).Voxel-based morphometry(VBM)techniques were employed to identify aberrant functional regions in the brain.Receiver operating characteristic(ROC)curves were utilized for classification based on the average VBM values of the two groups,and Pearson correlation analysis was conducted to assess the relationship between average VBM values in distinct brain regions and clinical manifestations.RESULTS:Relative to the DM controls,DVH patients exhibited reduced VBM values in the right superior temporal pole,the right superior temporal gyrus,the right medial orbital frontal gyrus,and the left superior frontal gyrus.Furthermore,ROC curve analysis of these four brain regions in DVH patients demonstrated a high degree of accuracy,as indicated by the area under the curve.The average VBM value in each of these regions exhibited a negative correlation with both the duration of DVH and the score on the Hospital Anxiety and Depression Scale(HADS).CONCLUSION:Pathological alterations in four distinct brain regions are observed in patients with DVH,potentially reflecting neuropathological changes associated with this condition.展开更多
Natural gas hydrate is a clean energy source with substantial resource potential.In contrast to conventional oil and gas,natural gas hydrate exists as a multi-phase system consisting of solids,liquids,and gases,which ...Natural gas hydrate is a clean energy source with substantial resource potential.In contrast to conventional oil and gas,natural gas hydrate exists as a multi-phase system consisting of solids,liquids,and gases,which presents unique challenges and complicates the mechanisms of seepage and exploitation.Both domestic and international natural gas hydrate production tests typically employ a single-well production model.Although this approach has seen some success,it continues to be hindered by low production rates and short production cycles.Therefore,there is an urgent need to explore a new well network to significantly increase the production of a single well.This paper provides a comprehensive review of the latest advancements in natural gas hydrate research,including both laboratory studies and field tests.It further examines the gas production processes and development outcomes for single wells,dual wells,multi-branch wells,and multi-well systems under conditions of depressurization,thermal injection,and CO_(2) replacement.On this basis,well types and well networks suitable for commercial exploitation of natural gas hydrate were explored,and the technical direction of natural gas hydrate development was proposed.The study shows that fully exploiting the flexibility of complex structural wells and designing a well network compatible with the reservoir is the key to improving production from a single well.Moreover,multi-well joint exploitation is identified as an effective strategy for achieving large-scale,efficient development of natural gas hydrate.展开更多
Gross primary production(GPP)is a crucial indicator representing the absorption of atmospheric CO_(2) by vegetation.At present,the estimation of GPP by remote sensing is mainly based on leaf-related vegetation indexes...Gross primary production(GPP)is a crucial indicator representing the absorption of atmospheric CO_(2) by vegetation.At present,the estimation of GPP by remote sensing is mainly based on leaf-related vegetation indexes and leaf-related biophysical para-meter leaf area index(LAI),which are not completely synchronized in seasonality with GPP.In this study,we proposed chlorophyll content-based light use efficiency model(CC-LUE)to improve GPP estimates,as chlorophyll is the direct site of photosynthesis,and only the light absorbed by chlorophyll is used in the photosynthetic process.The CC-LUE model is constructed by establishing a linear correlation between satellite-derived canopy chlorophyll content(Chlcanopy)and FPAR.This method was calibrated and validated utiliz-ing 7-d averaged in-situ GPP data from 14 eddy covariance flux towers covering deciduous broadleaf forest ecosystems across five dif-ferent climate zones.Results showed a relatively robust seasonal consistency between Chlcanopy with GPP in deciduous broadleaf forests under different climatic conditions.The CC-LUE model explained 88% of the in-situ GPP seasonality for all validation site-year and 56.0% of in-situ GPP variations through the growing season,outperforming the three widely used LUE models(MODIS-GPP algorithm,Vegetation Photosynthesis Model(VPM),and the eddy covariance-light use efficiency model(EC-LUE)).Additionally,the CC-LUE model(RMSE=0.50 g C/(m^(2)·d))significantly improved the underestimation of GPP during the growing season in semi-arid region,re-markably decreasing the root mean square error of averaged growing season GPP simulation and in-situ GPP by 75.4%,73.4%,and 37.5%,compared with MOD17(RMSE=2.03 g C/(m^(2)·d)),VPM(RMSE=1.88 g C/(m^(2)·d)),and EC-LUE(RMSE=0.80 g C/(m^(2)·d))model.The chlorophyll-based method proved superior in capturing the seasonal variations of GPP in forest ecosystems,thereby provid-ing the possibility of a more precise depiction of forest seasonal carbon uptake.展开更多
[Objective] The aim was to explore evaluated precision on quality of soil environment polluted with zinc in agricultural production areas and to provide references for verification of production area.[Method] In Shula...[Objective] The aim was to explore evaluated precision on quality of soil environment polluted with zinc in agricultural production areas and to provide references for verification of production area.[Method] In Shulan City in Jilin Province,soils were sampled and analyzed in a laboratory using single-factor pollution index and GIS based spatial interpolation.The quality of environment polluted with zinc was assessed and related methods were compared according to Environment Quality Standard of Green Food Production Area.[Result] Spatial interpolation of zinc in soils based on GIS proved more precise than traditional methods;cokriging method with co-factors was higher in precision than common cokriging;cokriging method with zinc and organic matter was higher in precision than cokriging with zinc alone.[Conclusion] Quality assessment on environment polluted with zinc based on GIS interpolation is more scientific and reasonable than traditional methods.展开更多
The optimized strategy made a comprehensive consideration of resources, technology, market orientation, production scale, industry basis and layout based on the principle of crop security and farmers’ income increasi...The optimized strategy made a comprehensive consideration of resources, technology, market orientation, production scale, industry basis and layout based on the principle of crop security and farmers’ income increasing, and determined the general planning on layout and structure optimization of future crop production ar-eas, with present crop production, market outlook, future industry development, con-cluding crop production characteristics of the 4 crop regions, and proposing function orientation and highlights.展开更多
A large number of mathematical models were developed for supporting agricultural production structure optimization decisions; however, few of them can address various uncertainties existing in many factors (e.g., eco...A large number of mathematical models were developed for supporting agricultural production structure optimization decisions; however, few of them can address various uncertainties existing in many factors (e.g., eco-social benefit maximization, food security, employment stability and ecosystem balance). In this study, an interval-probabilistic agricultural production structure optimization model (IPAPSOM) is formulated for tackling uncertainty presented as discrete intervals and/or probability distribution. The developed model improves upon the existing probabilistic programming and inexact optimization approaches. The IPAPSOM considers not only food security policy constraints, but also involves rural households’income increase and eco-environmental conversation, which can effectively reflect various interrelations among different aspects in an agricultural production structure optimization system. Moreover, it can also help examine the reliability of satisfying (or risk of violating) system constraints under uncertainty. The model is applied to a real case of long-term agricultural production structure optimization in Dancheng County, which is located in Henan Province of Central China as one of the major grain producing areas. Interval solutions associated with different risk levels of constraint violation are obtained. The results are useful for generating a range of decision alternatives under various system benefit conditions, and thus helping decision makers to identify the desired agricultural production structure optimization strategy under uncertainty.展开更多
Northeast of China and Jiangsu Province are major production areas of japonica rice in China.Rice from northeast of China is well-known for its good-eating and appearance quality,and that from Jiangsu Province is view...Northeast of China and Jiangsu Province are major production areas of japonica rice in China.Rice from northeast of China is well-known for its good-eating and appearance quality,and that from Jiangsu Province is viewed as inferior.However,little is known concerning the difference in physicochemical and sensory properties of rice between the major two production areas.Analysis of 16 commercial rice samples showed marked differences in physicochemical properties,including chalky grain rate,contents of amylose and protein and pasting properties between the two main areas.Northeastern rice contained more shortchain amylopectin as compared with Jiangsu rice.However,Jiangsu rice is comparable to northeastern rice in terms of sensory quality including overall acceptability and textural properties of springiness,stickiness and hardness as evaluated by trained panel.Our results indicated the limitation of conventional index of physicochemical properties,and suggested the necessity of identification of new factors controlling rice sensory property.In addition,the taste analyzer from Japan demonstrates limitation in distinguishing the differences between northeastern and Jiangsu rice,and therefore needs localization to fit China.展开更多
Purple Soil distributes extensively and mainly in China. Because of abundant easily weatherable parent rocks/ materials and unstable soil structure, and also influenced by parent materials, usage systems, and slope gr...Purple Soil distributes extensively and mainly in China. Because of abundant easily weatherable parent rocks/ materials and unstable soil structure, and also influenced by parent materials, usage systems, and slope gradients, erosion and sediment production of purple soils are very severe with main fashions of water erosion and gravitational erosion. Basing on observed data in small watersheds, rainfall erosivity, vegetation coverage, previous soil water content, flow and relating factors such as climate, topograph of small watershed, land usage, and soil kinds are all the influence factors of erosion and erodibility of purple soil as well as sediment production and transport in small watershed of purple hilly areas. The effective technological countermeasures of ecosystem restoration, agricultural tillage for water conservation and erosion prevention, agriculture project, and soil changing for fertility and anti-erosion were provided.展开更多
Food security is a strategic priority for a country’s economic development.In China,high-standard farmland construction(HSFC)is an important initiative to stabilize grain production and increase grain production capa...Food security is a strategic priority for a country’s economic development.In China,high-standard farmland construction(HSFC)is an important initiative to stabilize grain production and increase grain production capacity.Based on panel data from 31 sample provinces,autonomous regions,and municipalities in China from 2005–2017,this study explored the impact of HSFC on grain yield using the difference-in-differences(DID)method.The results showed that HSFC significantly increased total grain production,which is robust to various checks.HSFC increased grain yield through three potential mechanisms.First,it could increase the grain replanting index.Second,it could effectively reduce yield loss due to droughts and floods.Last,HSFC could strengthen the cultivated land by renovating the low-and medium-yielding fields.Heterogeneity analysis found that the HSFC farmland showed a significant increase in grain yield only in the main grain-producing areas and balanced areas.In addition,HSFC significantly increased the yields of rice,wheat,and maize while leading to a reduction in soybean yields.The findings suggest the government should continue to promote HSFC,improve construction standards,and strictly control the“non-agriculturalization”and“non-coordination”of farmland to increase grain production further.At the same time,market mechanisms should be used to incentivize soybean farming,improve returns and stabilize soybean yields.展开更多
A macro scale survey was performed to investigate the content of soil available nitrogen (N) and its spatial distribution in the main vegetable production areas of the Pearl River Delta.Preliminary enrichment-deficien...A macro scale survey was performed to investigate the content of soil available nitrogen (N) and its spatial distribution in the main vegetable production areas of the Pearl River Delta.Preliminary enrichment-deficient index of available N was then developed,which was a base for increasing fertilizer application efficiency and vegetable yield as well as for constructing soil testing and fertilizing formula.In general,most of the vegetable growth areas in Pearl River Delta were N-deficient or medium-N-deficient.There was 30%-62% increase in yield of Chinese cabbage on the N-deficient soil after application of N; when soil available N content was less than 145 mg/kg,the yield increased with application of N fertilizer at a rate of 60-70 kg/hm2.展开更多
The research aimed to understand farmers’willingness to adopt(WTA)and willingness to pay(WTP)for precision pesticide technologies and analyzed the determinants of farmers’decision-making.We used a two-stage approach...The research aimed to understand farmers’willingness to adopt(WTA)and willingness to pay(WTP)for precision pesticide technologies and analyzed the determinants of farmers’decision-making.We used a two-stage approach to consider farmers’WTA and WTP for precision pesticide technologies.A survey of 545 apple farmers was administered in Bohai Bay and the Loess Plateau in China.The data were analyzed using the double-hurdle model.The results indicated that 78.72%of respondents were willing to apply precision pesticide technologies provided by service organizations such as cooperatives and dedicated enterprises,and 69.72%were willing to buy the equipment for using precision pesticide technologies.The results of the determinant analysis indicated that farmers’perceived perceptions,farm scale,cooperative membership,access to digital information,and availability of financial services had significant and positive impacts on farmers’WTA precision pesticide technologies.Cooperative membership,technical training,and adherence to environmental regulations increased farmers’WTP for precision pesticide technologies.Moreover,nonlinear relationships between age,agricultural experience,and farmers’WTA and WTP for precision pesticide technology services were found.展开更多
Japanese traditional rice production technique features " sparse seeding,long cultivation,scattered planting and limited transplanting",and scientific rice production methods of deep plowing,fertilization,we...Japanese traditional rice production technique features " sparse seeding,long cultivation,scattered planting and limited transplanting",and scientific rice production methods of deep plowing,fertilization,weeding,irrigation and drainage are employed.This technique has reversed the common practice of " dense seeding and planting" in rice paddies and changed the history of growing rice spikes purely out of stems,thus enabling stable and high yields of several tillering grain crops including rice.The technique can provide a useful reference for developing modern rice production in warm areas.展开更多
During the 29 th Chinese National Antarctic Research Expedition,spatial variations in nitrogen isotopic composition of particulate nitrogen(δ15NPN)and their controlling factors were examined in detail with regard to ...During the 29 th Chinese National Antarctic Research Expedition,spatial variations in nitrogen isotopic composition of particulate nitrogen(δ15NPN)and their controlling factors were examined in detail with regard to nitrate drawdown by phytoplankton and particulate nitrogen(PN)remineralization in the Prydz Bay and its adjacent areas.To better constrain the nitrogen transformations,the physical and chemical parameters,including temperature,salinity,nutrients,PN andδ15NPN in seawater column were measured from surface to bottom.In addition,the nitrogen isotopic fractionation factor of nitrate assimilation by phytoplankton in the mixed layer,and the nitrogen isotopic fractionation factor of PN remineralization below the mixed layer were estimated using Rayleigh model and Steady State model,respectively.Our results showed that suspended particles had its lowestδ15NPN in the surface layer,which was due to the preferential assimilation of 14 N in nitrate by phytoplankton.Theδ15NPN in the mixed layer of the Prydz Bay and its adjacent areas decreased from the inner shelf to the outer basin,ascribing to the effect of isotope fractionation during phytoplankton assimilation.In mixed layer,the spatial distribution ofδ15NPN associated with particulate organic matter(POM)production can be well interpreted according to Rayleigh model and Steady State model.The nitrogen isotope fractionation factor during phytoplankton assimilating nitrate was estimated as 10.0‰by Steady State model,which was more reasonable than that calculated by Rayleigh model.These results validate the previous reports of fractionation factor during nitrate assimilation by phytoplankton.Increasingδ15NPN with depth below the euphotic zone correlated with the decreasing PN contents,and it was attributed to preferential remineralization of 14 N in PN by bacteria.In subsurface and deep layer,theδ15NPN distributions also conformed to Rayleigh model and Steady State model during PN remineralization,with a fractionation factor of about 3.6‰and 3.2‰,respectively.It is the first time to estimate the fractionation factor during POM production and remineralization in the Prydz Bay and its adjacent areas.Such fractionation may provide a useful tool for the follow-up study of the nitrogen dynamics in the Southern Ocean.展开更多
Mississippi State is renowned for its land resource areas (LRA) and production of bioenergy crops which generate both agricultural and economic benefits. Agricultural commodities play a key role in economic growth, th...Mississippi State is renowned for its land resource areas (LRA) and production of bioenergy crops which generate both agricultural and economic benefits. Agricultural commodities play a key role in economic growth, therefore the ability to produce more would enhance development. This paper offers an analysis of the production of bioenergy crops in Mississippi. Relative measures, time series graphs and descriptive statistics coupled with geographic information systems (GIS) mapping using ArcMap were employed to generate the outcome of this research. The outcome of the statistical analysis indicated that corn and soybeans were the most produced crops in Agricultural Districts 10 and 40. These districts produced more bioenergy crops than the other districts. GIS mapping results also showed that the potential area for bioenergy crops is in zone 131 of the Mississippi Land Resource Area (MLRA). This zone has an absolute advantage in the production of these crops which includes the diversity of biomass production such as corn, cotton, soybeans, wheat, rice, barley, grain sorghum, canola, camelina, algae, hardwoods, and softwood. The paper recommends a constant GIS mapping and land management systems for each agricultural district in Mississippi to enable researchers and farmers to determine the factors which contribute towards the increasing and decreasing trends in the production of the bioenergy crops.展开更多
China's food security mainly depends on the core areas of food production.Under the dual constraints of resource scarcity and environmental degradation,improving the grain production efficiency of the main grain-p...China's food security mainly depends on the core areas of food production.Under the dual constraints of resource scarcity and environmental degradation,improving the grain production efficiency of the main grain-producing areas has become the fundamental way to strengthen the grain production capacity and improve the national food security capability,and to improve the efficiency of grain production in major grain-producing areas requires empirical support.This paper used the Super SBM model and the Malmquist index to measure the grain production efficiency of the main grain-producing areas from 2001 to 2020 from both static and dynamic perspectives,and compared the differences in grain production efficiency among different soil types and different provinces(autonomous regions)in the main grain-producing areas.The results showed that from 2001 to 2020,the grain production in the main grain-producing areas was in a relatively ineffective state,and the differences in grain production efficiency among different soil types and different provinces(autonomous regions)in the main grain-producing areas were obvious.The order of grain production efficiency in different soil types was black soil region>red-yellow soil region>paddy soil region>fluvo-aquic soil region,and the order of grain production efficiency of the provinces(autonomous regions)in the main grain-producing areas was Jilin>Heilongjiang>Inner Mongolia>Jiangxi>Hunan>Sichuan>Hubei>Jiangsu>Liaoning>Henan>Anhui>Shandong>Hebei.From 2001 to 2020,the total factor productivity of grain in the main grain-producing areas increased,but due to the trade-off between the technological progress and the growth of technical efficiency,the increase in the total factor productivity of grain in the main grain-producing areas was small,and the growth mainly came from the increase of input factors in this period.The total factor productivity of grain in Hebei,Heilongjiang,Liaoning,Jilin,Inner Mongolia,Shandong,Jiangsu,Henan and Anhui increased,but the increase was small,while the total factor productivity of grain in Jiangxi,Sichuan,Hunan and Hubei provinces declined.展开更多
A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achievin...A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achieving a carbon peak and carbon neutrality has made eco-friendly mining that prioritizes the protection and efficient use of water resources essential.Based on the resource characteristics of mine water and heat hazards,an intensive coal-water-thermal collaborative co-mining paradigm for the duration of the mining process is proposed.An integrated system for the production,supply,and storage of mining companion resources is achieved through technologies such as roof water inrush prevention and control,hydrothermal quality improvement,and deep-injection geological storage.An active preventive and control system achieved by adjusting the mining technology and a passive system centered on multiobjective drainage and grouting treatment are suggested,in accordance with the original geological characteristics and dynamic process of water inrush.By implementing advanced multi-objective drainage,specifically designed to address the“skylight-type”water inrush mode in the Yulin mining area of Shaanxi Province,a substantial reduction of 50%in water drillings and inflow was achieved,leading to stabilized water conditions that effectively ensure subsequent safe coal mining.An integrated-energy complementary model that incorporates the clean production concept of heat utilization is also proposed.The findings indicate a potential saving of 8419 t of standard coal by using water and air heat as an alternative heating source for the Xiaojihan coalmine,resulting in an impressive energy conservation of 50.2%and a notable 24.2%reduction in carbon emissions.The ultra-deep sustained water injection of 100 m^(3)·h^(-1)in a single well would not rupture the formation or cause water leakage,and 7.87×10^(5)t of mine water could be effectively stored in the Liujiagou Formation,presenting a viable method for mine-water management in the Ordos Basin and providing insights for green and low-carbon mining.展开更多
文摘Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.
基金financially supported by the National Natural Science Foundation of China(Nos.52404328,52274412,and 52374418)the China Postdoctoral Science Foundation(No.2024M753248)。
文摘The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extracted from lunar regolith,which is highly rich in oxygen and contains polymetallic oxides.This oxygen and metal extraction can be achieved using existing metallurgical techniques.Furthermore,the ample reserves of water ice on the Moon offer another means for oxygen production.This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon,drawing from an analysis of lunar resources and environmental conditions.It delves into the principles,processes,advantages,and drawbacks of water-ice electrolysis,two-step oxygen production from lunar regolith,and one-step oxygen production from lunar regolith.The two-step methods involve hydrogen reduction,carbothermal reduction,and hydrometallurgy,while the one-step methods encompass fluorination/chlorination,high-temperature decomposition,molten salt electrolysis,and molten regolith electrolysis(MOE).Following a thorough comparison of raw materials,equipment,technology,and economic viability,MOE is identified as the most promising approach for future in-situ oxygen production on the Moon.Considering the corrosion characteristics of molten lunar regolith at high temperatures,along with the Moon's low-gravity environment,the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon.This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives.
基金supported by the National Research Foundation of Korea(NRF)grants(2022R1A2C4001228,2022M3H4A4097524,2022M3I3A1082499,and 2021M3I3A1084818)the Technology Innovation Program(20026415)of the Ministry of Trade,Industry&Energy(MOTIE,Korea)the supports from Nanopac for fabrication of scaled-up reactor.
文摘Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2) production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study reports Ir-doped NiFe_(2)O_(4)(NFI,~5 at%Ir)spinel layer with TiO_(2) overlayer(NFI/TiO_(2)),as a scalable heterojunction anode for direct electrolysis of wastewater with circumneutral pH in a single-compartment cell.In dilute(0.1 M)NaCl solutions,the NFI/TiO_(2) marks superior activity and selectivity for chlorine evolution reaction,outperforming the benchmark IrO_(2).Robust operation in near-neutral pH was confirmed.Electroanalyses including operando X-ray absorption spectroscopy unveiled crucial roles of TiO_(2) which serves both as the primary site for Cl−chemisorption and a protective layer for NFI as an ohmic contact.Galvanostatic electrolysis of NH4+-laden synthetic wastewater demonstrated that NFI/TiO_(2)not only achieves quasi-stoichiometric NH_(4)^(+)-to-N_(2)conversion,but also enhances H_(2)generation efficiency with minimal competing reactions such as reduction of dissolved oxygen and reactive chlorine.The scaled-up WEC with NFI/TiO_(2)was demonstrated for electrolysis of toilet wastewater.
文摘To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals like Cd and Pb in solid waste in mining areas and across the water body,sediment,soil and agricultural product ecosystem surrounding the mining areas.Focusing on the residual solid waste samples in lead-zinc deposits in a certain area of Guizhou Province,along with samples of topsoils,irrigation water,river sediments,and crops from surrounding areas.This study analyzed the distributions of eight heavy metals,i.e.,Cd,As,Cr,Hg,Pb,Zn,Cu,and Ni,in the samples through field surveys and sample tests.Furthermore,this study assessed the contamination levels and ecological risks of heavy metals in soils,sediments,and agricultural products using methods such as the single-factor index,Nemerow composite index,and potential ecological risk assessment.The results indicate that heavy metals in the solid waste samples all exhibited concentrations exceeding their risk screening values,with 60%greater than their risk intervention values.The soils and sediments demonstrate slight and moderate comprehensive ecological risks of heavy metals.The single-factor potential ecological risks of heavy metals in both the soil and sediment samples decreased in the order of Hg,Cd,Pb,As,Cu,Zn,Cr,and Ni,suggesting the same sources of heavy metals in the soils and sediments.Most of the agricultural product samples exhibited over-limit concentrations of heavy metals dominated by Cd,Pb,Ni,and Cr,excluding Hg and As.The agricultural product assessment using the Nemerow composite index reveals that 35%of the agricultural product samples reached the heavy metal contamination level,implying that the agricultural products from farmland around the solid waste dumps have been contaminated with heavy metals.The eight heavy metals in the soil,sediment,and agricultural product samples manifested high coefficients of variation(CVs),indicating pronounced spatial variability.This suggests that their concentrations in soils,sediments,and agricultural products are significantly influenced by human mining activities.Additionally,the agricultural products exhibit strong transport and accumulation capacities for Cd,Cu,and Zn.
基金Supported by National Natural Science Foundation of China(No.82160195,No.82460203)Science and Technology Project of Jiangxi Provincial Department of Education(No.GJJ200169)+1 种基金Science and Technology Project of Jiangxi Province Health Commission of Traditional Chinese Medicine(No.2020A0087)Science and Technology Project of Jiangxi Health Commission(No.202130210).
文摘AIM:To elucidate the neuropathological mechanisms underlying diabetic vitreous hemorrhage(DVH)and its correlation with clinical characteristics.METHODS:Twenty-one individuals with DVH(male/female 12/9;mean age 52.29±11.66y)were selected,alongside 21 appropriately matched controls with diabetes mellitus(DM).Voxel-based morphometry(VBM)techniques were employed to identify aberrant functional regions in the brain.Receiver operating characteristic(ROC)curves were utilized for classification based on the average VBM values of the two groups,and Pearson correlation analysis was conducted to assess the relationship between average VBM values in distinct brain regions and clinical manifestations.RESULTS:Relative to the DM controls,DVH patients exhibited reduced VBM values in the right superior temporal pole,the right superior temporal gyrus,the right medial orbital frontal gyrus,and the left superior frontal gyrus.Furthermore,ROC curve analysis of these four brain regions in DVH patients demonstrated a high degree of accuracy,as indicated by the area under the curve.The average VBM value in each of these regions exhibited a negative correlation with both the duration of DVH and the score on the Hospital Anxiety and Depression Scale(HADS).CONCLUSION:Pathological alterations in four distinct brain regions are observed in patients with DVH,potentially reflecting neuropathological changes associated with this condition.
基金This work was supported by the projects of the China Geological Survey(DD 20221703).
文摘Natural gas hydrate is a clean energy source with substantial resource potential.In contrast to conventional oil and gas,natural gas hydrate exists as a multi-phase system consisting of solids,liquids,and gases,which presents unique challenges and complicates the mechanisms of seepage and exploitation.Both domestic and international natural gas hydrate production tests typically employ a single-well production model.Although this approach has seen some success,it continues to be hindered by low production rates and short production cycles.Therefore,there is an urgent need to explore a new well network to significantly increase the production of a single well.This paper provides a comprehensive review of the latest advancements in natural gas hydrate research,including both laboratory studies and field tests.It further examines the gas production processes and development outcomes for single wells,dual wells,multi-branch wells,and multi-well systems under conditions of depressurization,thermal injection,and CO_(2) replacement.On this basis,well types and well networks suitable for commercial exploitation of natural gas hydrate were explored,and the technical direction of natural gas hydrate development was proposed.The study shows that fully exploiting the flexibility of complex structural wells and designing a well network compatible with the reservoir is the key to improving production from a single well.Moreover,multi-well joint exploitation is identified as an effective strategy for achieving large-scale,efficient development of natural gas hydrate.
基金Under the auspices of the National Key Research and Development Program of China(No.2019YFA0606603)。
文摘Gross primary production(GPP)is a crucial indicator representing the absorption of atmospheric CO_(2) by vegetation.At present,the estimation of GPP by remote sensing is mainly based on leaf-related vegetation indexes and leaf-related biophysical para-meter leaf area index(LAI),which are not completely synchronized in seasonality with GPP.In this study,we proposed chlorophyll content-based light use efficiency model(CC-LUE)to improve GPP estimates,as chlorophyll is the direct site of photosynthesis,and only the light absorbed by chlorophyll is used in the photosynthetic process.The CC-LUE model is constructed by establishing a linear correlation between satellite-derived canopy chlorophyll content(Chlcanopy)and FPAR.This method was calibrated and validated utiliz-ing 7-d averaged in-situ GPP data from 14 eddy covariance flux towers covering deciduous broadleaf forest ecosystems across five dif-ferent climate zones.Results showed a relatively robust seasonal consistency between Chlcanopy with GPP in deciduous broadleaf forests under different climatic conditions.The CC-LUE model explained 88% of the in-situ GPP seasonality for all validation site-year and 56.0% of in-situ GPP variations through the growing season,outperforming the three widely used LUE models(MODIS-GPP algorithm,Vegetation Photosynthesis Model(VPM),and the eddy covariance-light use efficiency model(EC-LUE)).Additionally,the CC-LUE model(RMSE=0.50 g C/(m^(2)·d))significantly improved the underestimation of GPP during the growing season in semi-arid region,re-markably decreasing the root mean square error of averaged growing season GPP simulation and in-situ GPP by 75.4%,73.4%,and 37.5%,compared with MOD17(RMSE=2.03 g C/(m^(2)·d)),VPM(RMSE=1.88 g C/(m^(2)·d)),and EC-LUE(RMSE=0.80 g C/(m^(2)·d))model.The chlorophyll-based method proved superior in capturing the seasonal variations of GPP in forest ecosystems,thereby provid-ing the possibility of a more precise depiction of forest seasonal carbon uptake.
基金Supported by National 973 Program(2010CB951500)National 863 Program(2006AA-120103)~~
文摘[Objective] The aim was to explore evaluated precision on quality of soil environment polluted with zinc in agricultural production areas and to provide references for verification of production area.[Method] In Shulan City in Jilin Province,soils were sampled and analyzed in a laboratory using single-factor pollution index and GIS based spatial interpolation.The quality of environment polluted with zinc was assessed and related methods were compared according to Environment Quality Standard of Green Food Production Area.[Result] Spatial interpolation of zinc in soils based on GIS proved more precise than traditional methods;cokriging method with co-factors was higher in precision than common cokriging;cokriging method with zinc and organic matter was higher in precision than cokriging with zinc alone.[Conclusion] Quality assessment on environment polluted with zinc based on GIS interpolation is more scientific and reasonable than traditional methods.
基金Supported by S&T Innovation Foundation of Hunan Academy of Agricultural Sciences~~
文摘The optimized strategy made a comprehensive consideration of resources, technology, market orientation, production scale, industry basis and layout based on the principle of crop security and farmers’ income increasing, and determined the general planning on layout and structure optimization of future crop production ar-eas, with present crop production, market outlook, future industry development, con-cluding crop production characteristics of the 4 crop regions, and proposing function orientation and highlights.
基金funded by the National Natural Science Foundation of China (41130748, 41101162)the Key Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-EW-304)
文摘A large number of mathematical models were developed for supporting agricultural production structure optimization decisions; however, few of them can address various uncertainties existing in many factors (e.g., eco-social benefit maximization, food security, employment stability and ecosystem balance). In this study, an interval-probabilistic agricultural production structure optimization model (IPAPSOM) is formulated for tackling uncertainty presented as discrete intervals and/or probability distribution. The developed model improves upon the existing probabilistic programming and inexact optimization approaches. The IPAPSOM considers not only food security policy constraints, but also involves rural households’income increase and eco-environmental conversation, which can effectively reflect various interrelations among different aspects in an agricultural production structure optimization system. Moreover, it can also help examine the reliability of satisfying (or risk of violating) system constraints under uncertainty. The model is applied to a real case of long-term agricultural production structure optimization in Dancheng County, which is located in Henan Province of Central China as one of the major grain producing areas. Interval solutions associated with different risk levels of constraint violation are obtained. The results are useful for generating a range of decision alternatives under various system benefit conditions, and thus helping decision makers to identify the desired agricultural production structure optimization strategy under uncertainty.
基金supported by the Program for New Century Excellent Talents in University, China (NCET-10-0472)the National Natural Science Foundation of China (30971733 and 31171485)
文摘Northeast of China and Jiangsu Province are major production areas of japonica rice in China.Rice from northeast of China is well-known for its good-eating and appearance quality,and that from Jiangsu Province is viewed as inferior.However,little is known concerning the difference in physicochemical and sensory properties of rice between the major two production areas.Analysis of 16 commercial rice samples showed marked differences in physicochemical properties,including chalky grain rate,contents of amylose and protein and pasting properties between the two main areas.Northeastern rice contained more shortchain amylopectin as compared with Jiangsu rice.However,Jiangsu rice is comparable to northeastern rice in terms of sensory quality including overall acceptability and textural properties of springiness,stickiness and hardness as evaluated by trained panel.Our results indicated the limitation of conventional index of physicochemical properties,and suggested the necessity of identification of new factors controlling rice sensory property.In addition,the taste analyzer from Japan demonstrates limitation in distinguishing the differences between northeastern and Jiangsu rice,and therefore needs localization to fit China.
基金Supported by Knowledge Innovation Program of Chinese Academy of Sciences(KZCX3-SW-330, KZCX2-SW-319).
文摘Purple Soil distributes extensively and mainly in China. Because of abundant easily weatherable parent rocks/ materials and unstable soil structure, and also influenced by parent materials, usage systems, and slope gradients, erosion and sediment production of purple soils are very severe with main fashions of water erosion and gravitational erosion. Basing on observed data in small watersheds, rainfall erosivity, vegetation coverage, previous soil water content, flow and relating factors such as climate, topograph of small watershed, land usage, and soil kinds are all the influence factors of erosion and erodibility of purple soil as well as sediment production and transport in small watershed of purple hilly areas. The effective technological countermeasures of ecosystem restoration, agricultural tillage for water conservation and erosion prevention, agriculture project, and soil changing for fertility and anti-erosion were provided.
基金supported by the National Natural Science Foundation of China(41871184)the National Social Science Fund of China(21ZDA056)the Scientific and Technological Innovation Project of the Chinese Academy of Agricultural Sciences(10-IAED-ZT-01-2023and 10-IAED-RC-07-2023)。
文摘Food security is a strategic priority for a country’s economic development.In China,high-standard farmland construction(HSFC)is an important initiative to stabilize grain production and increase grain production capacity.Based on panel data from 31 sample provinces,autonomous regions,and municipalities in China from 2005–2017,this study explored the impact of HSFC on grain yield using the difference-in-differences(DID)method.The results showed that HSFC significantly increased total grain production,which is robust to various checks.HSFC increased grain yield through three potential mechanisms.First,it could increase the grain replanting index.Second,it could effectively reduce yield loss due to droughts and floods.Last,HSFC could strengthen the cultivated land by renovating the low-and medium-yielding fields.Heterogeneity analysis found that the HSFC farmland showed a significant increase in grain yield only in the main grain-producing areas and balanced areas.In addition,HSFC significantly increased the yields of rice,wheat,and maize while leading to a reduction in soybean yields.The findings suggest the government should continue to promote HSFC,improve construction standards,and strictly control the“non-agriculturalization”and“non-coordination”of farmland to increase grain production further.At the same time,market mechanisms should be used to incentivize soybean farming,improve returns and stabilize soybean yields.
基金supported by the Special Financial Support Program on Agriculture Research of Public Welfare Industry (Grant No. nyhyzx07-007-6)Special Fund for the Guangdong Modern Agriculture Industrial System Construction(Guangdong Agriculture 2009-380)+2 种基金Guangdong Agriculture Brainstorm Project ( Grant No. 2008B021000045, 2009B 020202003)the National Science and Technology Support Program (Grant No.2007BAD89B14)Agriculture Brainstorm Project of Panyu District, Guangzhou, Guangdong province(Grant No.2010-Z-82-1)
文摘A macro scale survey was performed to investigate the content of soil available nitrogen (N) and its spatial distribution in the main vegetable production areas of the Pearl River Delta.Preliminary enrichment-deficient index of available N was then developed,which was a base for increasing fertilizer application efficiency and vegetable yield as well as for constructing soil testing and fertilizing formula.In general,most of the vegetable growth areas in Pearl River Delta were N-deficient or medium-N-deficient.There was 30%-62% increase in yield of Chinese cabbage on the N-deficient soil after application of N; when soil available N content was less than 145 mg/kg,the yield increased with application of N fertilizer at a rate of 60-70 kg/hm2.
基金supported by the National Key Research and Development Program of China(2017YFE0122500)the UK BBSRC-Innovate UK–China Agritech Challenge Funded Project(RED-APPLE,BB/S020985/1)the project supported by the Fundamental Research Funds for the Central Universities,China(2662022JGQD001).
文摘The research aimed to understand farmers’willingness to adopt(WTA)and willingness to pay(WTP)for precision pesticide technologies and analyzed the determinants of farmers’decision-making.We used a two-stage approach to consider farmers’WTA and WTP for precision pesticide technologies.A survey of 545 apple farmers was administered in Bohai Bay and the Loess Plateau in China.The data were analyzed using the double-hurdle model.The results indicated that 78.72%of respondents were willing to apply precision pesticide technologies provided by service organizations such as cooperatives and dedicated enterprises,and 69.72%were willing to buy the equipment for using precision pesticide technologies.The results of the determinant analysis indicated that farmers’perceived perceptions,farm scale,cooperative membership,access to digital information,and availability of financial services had significant and positive impacts on farmers’WTA precision pesticide technologies.Cooperative membership,technical training,and adherence to environmental regulations increased farmers’WTP for precision pesticide technologies.Moreover,nonlinear relationships between age,agricultural experience,and farmers’WTA and WTP for precision pesticide technology services were found.
基金Supported by National Social Science Foundation"A Study on Japanese Traditional Agricultural Science and Technology and Its Modern Ecological Value"(17CSS031)
文摘Japanese traditional rice production technique features " sparse seeding,long cultivation,scattered planting and limited transplanting",and scientific rice production methods of deep plowing,fertilization,weeding,irrigation and drainage are employed.This technique has reversed the common practice of " dense seeding and planting" in rice paddies and changed the history of growing rice spikes purely out of stems,thus enabling stable and high yields of several tillering grain crops including rice.The technique can provide a useful reference for developing modern rice production in warm areas.
基金The National Natural Science Foundation of China under contract No.41721005the COMRA Program of China under contract No.DY135-E2-2-03the Polar Environment Comprehensive Investigation&Assessment Program of China under contract Nos CHINARE2017-01-04-03 and CHINARE2017-04-01-06
文摘During the 29 th Chinese National Antarctic Research Expedition,spatial variations in nitrogen isotopic composition of particulate nitrogen(δ15NPN)and their controlling factors were examined in detail with regard to nitrate drawdown by phytoplankton and particulate nitrogen(PN)remineralization in the Prydz Bay and its adjacent areas.To better constrain the nitrogen transformations,the physical and chemical parameters,including temperature,salinity,nutrients,PN andδ15NPN in seawater column were measured from surface to bottom.In addition,the nitrogen isotopic fractionation factor of nitrate assimilation by phytoplankton in the mixed layer,and the nitrogen isotopic fractionation factor of PN remineralization below the mixed layer were estimated using Rayleigh model and Steady State model,respectively.Our results showed that suspended particles had its lowestδ15NPN in the surface layer,which was due to the preferential assimilation of 14 N in nitrate by phytoplankton.Theδ15NPN in the mixed layer of the Prydz Bay and its adjacent areas decreased from the inner shelf to the outer basin,ascribing to the effect of isotope fractionation during phytoplankton assimilation.In mixed layer,the spatial distribution ofδ15NPN associated with particulate organic matter(POM)production can be well interpreted according to Rayleigh model and Steady State model.The nitrogen isotope fractionation factor during phytoplankton assimilating nitrate was estimated as 10.0‰by Steady State model,which was more reasonable than that calculated by Rayleigh model.These results validate the previous reports of fractionation factor during nitrate assimilation by phytoplankton.Increasingδ15NPN with depth below the euphotic zone correlated with the decreasing PN contents,and it was attributed to preferential remineralization of 14 N in PN by bacteria.In subsurface and deep layer,theδ15NPN distributions also conformed to Rayleigh model and Steady State model during PN remineralization,with a fractionation factor of about 3.6‰and 3.2‰,respectively.It is the first time to estimate the fractionation factor during POM production and remineralization in the Prydz Bay and its adjacent areas.Such fractionation may provide a useful tool for the follow-up study of the nitrogen dynamics in the Southern Ocean.
文摘Mississippi State is renowned for its land resource areas (LRA) and production of bioenergy crops which generate both agricultural and economic benefits. Agricultural commodities play a key role in economic growth, therefore the ability to produce more would enhance development. This paper offers an analysis of the production of bioenergy crops in Mississippi. Relative measures, time series graphs and descriptive statistics coupled with geographic information systems (GIS) mapping using ArcMap were employed to generate the outcome of this research. The outcome of the statistical analysis indicated that corn and soybeans were the most produced crops in Agricultural Districts 10 and 40. These districts produced more bioenergy crops than the other districts. GIS mapping results also showed that the potential area for bioenergy crops is in zone 131 of the Mississippi Land Resource Area (MLRA). This zone has an absolute advantage in the production of these crops which includes the diversity of biomass production such as corn, cotton, soybeans, wheat, rice, barley, grain sorghum, canola, camelina, algae, hardwoods, and softwood. The paper recommends a constant GIS mapping and land management systems for each agricultural district in Mississippi to enable researchers and farmers to determine the factors which contribute towards the increasing and decreasing trends in the production of the bioenergy crops.
基金Supported by Science of China University Journals(CUJS2021-027)China Agricultural Journals Website 2021(CAJW2021-033)。
文摘China's food security mainly depends on the core areas of food production.Under the dual constraints of resource scarcity and environmental degradation,improving the grain production efficiency of the main grain-producing areas has become the fundamental way to strengthen the grain production capacity and improve the national food security capability,and to improve the efficiency of grain production in major grain-producing areas requires empirical support.This paper used the Super SBM model and the Malmquist index to measure the grain production efficiency of the main grain-producing areas from 2001 to 2020 from both static and dynamic perspectives,and compared the differences in grain production efficiency among different soil types and different provinces(autonomous regions)in the main grain-producing areas.The results showed that from 2001 to 2020,the grain production in the main grain-producing areas was in a relatively ineffective state,and the differences in grain production efficiency among different soil types and different provinces(autonomous regions)in the main grain-producing areas were obvious.The order of grain production efficiency in different soil types was black soil region>red-yellow soil region>paddy soil region>fluvo-aquic soil region,and the order of grain production efficiency of the provinces(autonomous regions)in the main grain-producing areas was Jilin>Heilongjiang>Inner Mongolia>Jiangxi>Hunan>Sichuan>Hubei>Jiangsu>Liaoning>Henan>Anhui>Shandong>Hebei.From 2001 to 2020,the total factor productivity of grain in the main grain-producing areas increased,but due to the trade-off between the technological progress and the growth of technical efficiency,the increase in the total factor productivity of grain in the main grain-producing areas was small,and the growth mainly came from the increase of input factors in this period.The total factor productivity of grain in Hebei,Heilongjiang,Liaoning,Jilin,Inner Mongolia,Shandong,Jiangsu,Henan and Anhui increased,but the increase was small,while the total factor productivity of grain in Jiangxi,Sichuan,Hunan and Hubei provinces declined.
基金supported by the National Key Research and Development Program of China(2021YFC2902004)the National Natural Science Foundation of China(42072284,42027801,and 41877186).
文摘A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achieving a carbon peak and carbon neutrality has made eco-friendly mining that prioritizes the protection and efficient use of water resources essential.Based on the resource characteristics of mine water and heat hazards,an intensive coal-water-thermal collaborative co-mining paradigm for the duration of the mining process is proposed.An integrated system for the production,supply,and storage of mining companion resources is achieved through technologies such as roof water inrush prevention and control,hydrothermal quality improvement,and deep-injection geological storage.An active preventive and control system achieved by adjusting the mining technology and a passive system centered on multiobjective drainage and grouting treatment are suggested,in accordance with the original geological characteristics and dynamic process of water inrush.By implementing advanced multi-objective drainage,specifically designed to address the“skylight-type”water inrush mode in the Yulin mining area of Shaanxi Province,a substantial reduction of 50%in water drillings and inflow was achieved,leading to stabilized water conditions that effectively ensure subsequent safe coal mining.An integrated-energy complementary model that incorporates the clean production concept of heat utilization is also proposed.The findings indicate a potential saving of 8419 t of standard coal by using water and air heat as an alternative heating source for the Xiaojihan coalmine,resulting in an impressive energy conservation of 50.2%and a notable 24.2%reduction in carbon emissions.The ultra-deep sustained water injection of 100 m^(3)·h^(-1)in a single well would not rupture the formation or cause water leakage,and 7.87×10^(5)t of mine water could be effectively stored in the Liujiagou Formation,presenting a viable method for mine-water management in the Ordos Basin and providing insights for green and low-carbon mining.