In this work,to study the phase structure effect,three groups of Cu/REO catalysts were prepared with cubic and monoclinic Gd_(2)O_(3),Eu_(2)O_(3)and Sm_(2)O_(3) supports for MSR reaction to produce H_(2).Based on CH3O...In this work,to study the phase structure effect,three groups of Cu/REO catalysts were prepared with cubic and monoclinic Gd_(2)O_(3),Eu_(2)O_(3)and Sm_(2)O_(3) supports for MSR reaction to produce H_(2).Based on CH3OH conversion and H_(2)yield,the reaction perfo rmance of the catalysts ranks as Cu/Sm_(2)O_(3)-M>Cu/Sm_(2)O_(3)-C>Cu/Gd_(2)O_(3)-M>Cu/Gd_(2)O_(3)-C>Cu/Eu_(2)O_(3)-M>Cu/Eu_(2)O_(3)-C.For the same kind of REO,Cu supported on the monoclinic support shows better performance than on the cubic one.Despite the phase structure difference,Sm_(2)O_(3) is the best support among all the three kinds of REOs.Compared with Cu/REO catalysts prepared with cubic supports,the corresponding catalysts prepared with monoclinic supports generally possess mo re surface oxygen vacancies,which can generate mo re surface active oxygen(O_(2)^(-)) and moderate basic sites.Moreover,the contents of Cu^(+) on the catalysts follow the same sequence.The reaction performance is positively related to the amount of these three types of surface sites.But metallic Cuo species is necessary to maintain the Cu^(+)■Cu^(0) redox cycle.Furthe rmore,on a catalyst with good perfo rmance,those vital surface reaction intermediates can be stabilized during the reaction.Cu/Sm_(2)O_(3)-M possesses the largest quantities of these surface sites,and has the appropriate amount of Cu^(+) and Cu^(0) after reduction,thereby displaying the optimal performance in all the catalysts.In conclusion,evident support crystal structure effect is observed for Cu/REO catalysts,and a monoclinic phase REO is a better support than the respective cubic phase one.展开更多
Determination of the rare earth impurity in pure cerium oxide is done by ICP-MS.The interference and other factors which affect analytical results were discussed.The accuracy are between 0.81% ~ 11.98% and the recove...Determination of the rare earth impurity in pure cerium oxide is done by ICP-MS.The interference and other factors which affect analytical results were discussed.The accuracy are between 0.81% ~ 11.98% and the recoveries of standard addition are 96% ~ 112.5%.This method can meet the demand for product inspection.展开更多
The Mn-Ce-Fe mixed oxide(MCFe)was prepared by co-precipitation and the catalytic performance was tested by using 1,2-dichlorobenzene(1,2-DCB)and furan as model molecules of PCDD/F.The effect of O_(2)concentration,SO_(...The Mn-Ce-Fe mixed oxide(MCFe)was prepared by co-precipitation and the catalytic performance was tested by using 1,2-dichlorobenzene(1,2-DCB)and furan as model molecules of PCDD/F.The effect of O_(2)concentration,SO_(2) and NO on the catalytic activity was studied.At 270℃,the MCFe oxide catalyst presents significant simultaneous removal efficiency of 75.25%and 100%for 1,2-DCB and furan,respectively.Brunauer-Emmett-Teller(BET)method(BET),X-ray diffraction(XRD),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FTIR),H_2-temperature programmed reduction(H_(2)-TPR),NH_(3)-temperature programmed desorption(NH_3-TPD)and O_(2)-TPD were used to characterize the catalysts before and after the reaction.Competition tests suggest that the oxidation behavior of furan occurred prior to that of 1,2-DCB.According to the intermediate products detected by gas chromatography-mass spectrometry(GC-MS),the by-products include chlorinated hydrocarbons,long-chain hydrocarbons,ketone,etc.Possible catalytic oxidation reaction paths are proposed.展开更多
CuOx/CeO2 catalysts were prepared by adsorption-impregnation method, CO conversion was tested over the catalysts pretreated under different conditions for preferential CO oxidation in H2, and the catalysts were charac...CuOx/CeO2 catalysts were prepared by adsorption-impregnation method, CO conversion was tested over the catalysts pretreated under different conditions for preferential CO oxidation in H2, and the catalysts were characterized with X-ray photoelectron spectroscopy and temperature programmed reduction. Experimental results show that there are two kinds of copper, which are Cu^+ and Cu^2+ in calcined CuOx/CeO2, Among them, the Cu^+ is the key active component for CO oxidation. The main reason is as follows: CO is activated by copper for CO oxidation over CuOx/CeO2, while CO can not be activated by Cu^2+. Only when Cu^2+ is reduced to Cu ^+ or Cu^0, the copper may be active for CO oxidation, moreover, the experimental results show that the reduction of Cu^2+ does not lead to an increase of catalytic activity. So the active species is Cu^+ in CuOx/CeO2 catalysts.展开更多
基金Project supported by the National Natural Science Foundation of China(22172071,22102069,22062013,22262021,21962009)Natural Science Foundation of Jiangxi Province,China(20202BAB203006,20212BAB203030)Key Laboratory Foundation of Jiangxi Province for Environment and Energy Catalysis,China(20181BCD40004).
文摘In this work,to study the phase structure effect,three groups of Cu/REO catalysts were prepared with cubic and monoclinic Gd_(2)O_(3),Eu_(2)O_(3)and Sm_(2)O_(3) supports for MSR reaction to produce H_(2).Based on CH3OH conversion and H_(2)yield,the reaction perfo rmance of the catalysts ranks as Cu/Sm_(2)O_(3)-M>Cu/Sm_(2)O_(3)-C>Cu/Gd_(2)O_(3)-M>Cu/Gd_(2)O_(3)-C>Cu/Eu_(2)O_(3)-M>Cu/Eu_(2)O_(3)-C.For the same kind of REO,Cu supported on the monoclinic support shows better performance than on the cubic one.Despite the phase structure difference,Sm_(2)O_(3) is the best support among all the three kinds of REOs.Compared with Cu/REO catalysts prepared with cubic supports,the corresponding catalysts prepared with monoclinic supports generally possess mo re surface oxygen vacancies,which can generate mo re surface active oxygen(O_(2)^(-)) and moderate basic sites.Moreover,the contents of Cu^(+) on the catalysts follow the same sequence.The reaction performance is positively related to the amount of these three types of surface sites.But metallic Cuo species is necessary to maintain the Cu^(+)■Cu^(0) redox cycle.Furthe rmore,on a catalyst with good perfo rmance,those vital surface reaction intermediates can be stabilized during the reaction.Cu/Sm_(2)O_(3)-M possesses the largest quantities of these surface sites,and has the appropriate amount of Cu^(+) and Cu^(0) after reduction,thereby displaying the optimal performance in all the catalysts.In conclusion,evident support crystal structure effect is observed for Cu/REO catalysts,and a monoclinic phase REO is a better support than the respective cubic phase one.
文摘Determination of the rare earth impurity in pure cerium oxide is done by ICP-MS.The interference and other factors which affect analytical results were discussed.The accuracy are between 0.81% ~ 11.98% and the recoveries of standard addition are 96% ~ 112.5%.This method can meet the demand for product inspection.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(LQ23E060002)the National Natural Science Foundation of China(51976192)。
文摘The Mn-Ce-Fe mixed oxide(MCFe)was prepared by co-precipitation and the catalytic performance was tested by using 1,2-dichlorobenzene(1,2-DCB)and furan as model molecules of PCDD/F.The effect of O_(2)concentration,SO_(2) and NO on the catalytic activity was studied.At 270℃,the MCFe oxide catalyst presents significant simultaneous removal efficiency of 75.25%and 100%for 1,2-DCB and furan,respectively.Brunauer-Emmett-Teller(BET)method(BET),X-ray diffraction(XRD),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FTIR),H_2-temperature programmed reduction(H_(2)-TPR),NH_(3)-temperature programmed desorption(NH_3-TPD)and O_(2)-TPD were used to characterize the catalysts before and after the reaction.Competition tests suggest that the oxidation behavior of furan occurred prior to that of 1,2-DCB.According to the intermediate products detected by gas chromatography-mass spectrometry(GC-MS),the by-products include chlorinated hydrocarbons,long-chain hydrocarbons,ketone,etc.Possible catalytic oxidation reaction paths are proposed.
文摘CuOx/CeO2 catalysts were prepared by adsorption-impregnation method, CO conversion was tested over the catalysts pretreated under different conditions for preferential CO oxidation in H2, and the catalysts were characterized with X-ray photoelectron spectroscopy and temperature programmed reduction. Experimental results show that there are two kinds of copper, which are Cu^+ and Cu^2+ in calcined CuOx/CeO2, Among them, the Cu^+ is the key active component for CO oxidation. The main reason is as follows: CO is activated by copper for CO oxidation over CuOx/CeO2, while CO can not be activated by Cu^2+. Only when Cu^2+ is reduced to Cu ^+ or Cu^0, the copper may be active for CO oxidation, moreover, the experimental results show that the reduction of Cu^2+ does not lead to an increase of catalytic activity. So the active species is Cu^+ in CuOx/CeO2 catalysts.