China is the world’s largest producer of copper processing products as well as the world’s largest copper consumer market.In 2013,China produced more than 13.60 million tons of copper processing products,accounting ...China is the world’s largest producer of copper processing products as well as the world’s largest copper consumer market.In 2013,China produced more than 13.60 million tons of copper processing products,accounting for60%of the world’s total production.Since then,this proportion has expanded year by year,and will increase to about 66.7%in 2016.Meanwhile,China consumed nearly 11展开更多
In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a se...In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a series which has the factors of the absolute tensor product of the Dirichlet L-functions. This study is a generalization of Akatsuka’s theorem on the Riemann zeta function, and gives a proof of Kurokawa’s prediction proposed in 1992.展开更多
Hubei Province is the main winter rapeseed producing area in China,and has the national advantage and characteristic industrial cluster of rape.The protection zone for the production of important agricultural products...Hubei Province is the main winter rapeseed producing area in China,and has the national advantage and characteristic industrial cluster of rape.The protection zone for the production of important agricultural products of rapeseed in Hubei Province also ranks first as that in Hunan Province.This paper studied the winter rape industry,the important agricultural product production protection zone of rapeseed,the provincial double-low high-quality rape protection zone and the industrial cluster of rape in Jianghan Plain in Hubei Province,and analyzed the main problems existing in the development of rapeseed production protection zone and industrial cluster of rape.Finally,it came up with strategies including promoting national rape varieties,overcoming the problem of rape"agricultural chip",promoting the"rice+rape"rotation model,and strengthening the protection of intellectual property rights of brand marks.展开更多
Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Fie...Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Field experiments were conducted to study the responses of water productivity for crop yield(WP_(Y-ET)) and final biomass(WP_(B-ET)) of film-mulched hybrid maize seed production to different irrigation and N treatments in the Hexi Corridor, Northwest China during April to September in 2013 and also during April to September in 2014. Three irrigation levels(70%–65%, 60%–55%, and 50%–45% of the field capacity) combined with three N rates(500, 400, and 300 kg N/hm^2) were tested in 2013. The N treatments were adjusted to 500, 300, and 100 kg N/hm^2 in 2014. Results showed that the responses of WP_(Y-ET) and WP_(B-ET) to different irrigation amounts were different. WP_(Y-ET) was significantly reduced by lowering irrigation amounts while WP_(B-ET) stayed relatively insensitive to irrigation amounts. However, WP_(Y-ET) and WP_(B-ET) behaved consistently when subjected to different N treatments. There was a slight effect of reducing N input from 500 to 300 kg/hm^2 on the WP_(Y-ET) and WP_(B-ET), however, when reducing N input to 100 kg/hm^2, the values of WP_(Y-ET) and WP_(B-ET) were significantly reduced. Water is the primary factor and N is the secondary factor in determining both yield(Y) and final biomass(B). Partial factor productivity from applied N(PFP_N) was the maximum under the higher irrigation level and in lower N rate(100–300 kg N/hm^2) in both years(2013 and 2014). Lowering the irrigation amount significantly reduced evapotranspiration(ET), but ET did not vary with different N rates(100–500 kg N/hm^2). Both Y and B had robust linear relationships with ET, but the correlation between B and ET(R^2=0.8588) was much better than that between Y and ET(R^2=0.6062). When ET increased, WP_(Y-ET) linearly increased and WP_(B-ET) decreased. Taking the indices of Y, B, WP_(Y-ET), WP_(B-ET) and PFP_N into account, a higher irrigation level(70%–65% of the field capacity) and a lower N rate(100–300 kg N/hm^2) are recommended to be a proper irrigation and N application strategy for plastic film-mulched hybrid maize seed production in arid Northwest China.展开更多
The platform of distributed design and resource sharing is important for medium-sized and small companies in developing products to improve competitiveness. As a background of creative product design, a knowledge mode...The platform of distributed design and resource sharing is important for medium-sized and small companies in developing products to improve competitiveness. As a background of creative product design, a knowledge model based on product collaborative innovation development of products (CIDP) is proposed. Characteristics of CIDP are analyzed, and the framework and key technologies of the CIDP-platform based knowledge studied. Through integration of existing system and interface designs, a development platform has been built to support the PCID within knowledge-based engineering (KBE). An example is presented, indicating that the prototype system is maneuverable and practical.展开更多
Background: Modification of chemical composition of diets fed to dairy cows might be a good strategy to reduce methane(CH4) production in the rumen. Notable reductions of CH4 production compared to conventional hig...Background: Modification of chemical composition of diets fed to dairy cows might be a good strategy to reduce methane(CH4) production in the rumen. Notable reductions of CH4 production compared to conventional highroughages rations were more frequently observed for very concentrated diets or when fat supplements were used. In these cases, the reduction in the gas emission was mainly a consequence of an overall impairment of rumen function with a reduction of fiber digestibility. These strategies do not always comply with feeding standards used in intensive dairy farms and they are usually not applied owing to the risks of negative health and economic consequences.Thus, the present study evaluated the effects of seven commercial diets with contents of neutral detergent fiber(NDF),protein and lipids ranging 325 to 435 g/kg DM, 115 to 194 g/kg DM, and 26 to 61 g/kg DM, respectively, on in vitro degradability, gas(GP), and CH4 production.Results: In this experiment, changes in the dietary content of NDF, crude protein(CP) and lipids were always obtained at the expense or in favor of starch. A decreased of the dietary NDF content increased NDF(NDFd) and true DM(TDMd) degradability, and increased CH4 production per g of incubated DM(P 〈 0.001), but not that per g of TDMd. An increase of the dietary CP level did not change in vitro NDFd and TDMd, decreased GP per g of incubated DM(P 〈 0.001), but CH4 production per g of TDMd was not affected. An increased dietary lipid content reduced NDFd, TDMd,and GP per g of incubated DM, but it had no consequence on CH4 production per g of TDMd.Conclusions: It was concluded that, under commercial conditions, changes in dietary composition would produce small or negligible alterations of CH4 production per unit of TDMd, but greater differences in GP and CH4 production would be expected when these amounts are expressed per unit of DM intake. The use of TDMd as a standardizing parameter is proposed to account for possible difference in DM intake and productivity.展开更多
Effects of some methodological factors on in vitro measures of gas production(GP, mL/g DM), CH4production(mL/g DM) and proportion(% CH4 on total GP) were investigated by meta-analysis. These factors were conside...Effects of some methodological factors on in vitro measures of gas production(GP, mL/g DM), CH4production(mL/g DM) and proportion(% CH4 on total GP) were investigated by meta-analysis. These factors were considered:pressure in the GP equipment(0 = constant; 1 = increasing), incubation time(0 = 24; 1 = ≥ 48 h), time of rumen fluid collection(0 = before feeding; 1 = after feeding of donor animals), donor species of rumen fluid(0 = sheep; 1 =bovine), presence of N in the buffer solution(0 = presence; 1 = absence), and ratio between amount of buffered rumen fluid and feed sample(BRF/FS; 0 = ≤ 130 mL/g DM; 1 = 130–140 mL/g DM; 2 = ≥ 140 mL/g DM). The NDF content of feed sample incubated(NDF) was considered as a continuous variable. From an initial database of 105 papers, 58 were discarded because one of the above-mentioned factors was not stated. After discarding 17 papers,the final dataset comprised 30 papers(339 observations). A preliminary mixed model analysis was carried out on experimental data considering the study as random factor. Variables adjusted for study effect were analyzed using a backward stepwise analysis including the above-mentioned variables. The analysis showed that the extension of incubation time and reduction of NDF increased GP and CH4 values. Values of GP and CH4 also increased when rumen fluid was collected after feeding compared to before feeding(+26.4 and +9.0 mL/g DM, for GP and CH4),from bovine compared to sheep(+32.8 and +5.2 mL/g DM, for GP and CH4), and when the buffer solution did not contain N(+24.7 and +6.7 mL/g DM for GP and CH4). The increase of BRF/FS ratio enhanced GP and CH4production(+7.7 and +3.3 mL/g DM per each class of increase, respectively). In vitro techniques for measuring GP and CH4 production are mostly used as screening methods, thus a full standardization of such techniques is not feasible. However, a greater harmonization of analytical procedures(i.e., a reduction in the number of available protocols) would be useful to facilitate comparison between results of different experiments.展开更多
Figs (Moracea: Ficus) and fig wasps (Hymenoptera: Chlocloids: Agaonideae) depend on each other to complete their reproduction. Monoecious fig species and their pollinating wasps are in conflict over the use of fig ov...Figs (Moracea: Ficus) and fig wasps (Hymenoptera: Chlocloids: Agaonideae) depend on each other to complete their reproduction. Monoecious fig species and their pollinating wasps are in conflict over the use of fig ovaries which can either produce one seed or one wasp. From observation on Ficus virens Ait., we showed that female flowers with outer layer of ovaries (near to the wall of syconium) had no significant difference from that with inner and interval layer of ovaries (near to the syconium cavity), in which most seeds and wasps were produced. This meant that fig tree provided the same potential resource for seed and wasps production. Observation indicated that there was usually only one foundress in syconium at female flower phase and no com- petition pollinators. Measurement of the style length of female flowers and the ovipositor of pollinators indicated that most ovaries could be reached by pollinator’s ovipositor. However, at the male flower phase, production of seeds was significantly more than that of wasps including non-pollinating wasps but there was no significant difference between seed and pollinating wasp production when without non-pollinating wasps produced. This result indicated that non-pollinating wasps competed ovaries not with seeds but with pollinating wasps for ovipositing. Bagged experiment showed that the sampling fig species was not self-sterile which was important for figs and wasps to survive bad season. Seed production in self-pollinated figs was not significantly different from total wasps in- cluding non-pollinating ones. This might be related with the weaker competition among wasps since bagged figs were not easy to reach by wasps from outside.展开更多
[Objective] This study aimed to understand and grasp the soil heavy metal pollution status of agricultural habitat environment in Xi'an City. [Method] The soil heavy metal pollution status of pollution-free agricultu...[Objective] This study aimed to understand and grasp the soil heavy metal pollution status of agricultural habitat environment in Xi'an City. [Method] The soil heavy metal pollution status of pollution-free agricultural products-producing areas in 9 counties (districts) of Xi'an City was investigated. A total of 609 soil samples were collected, and their Cd, Hg, As, Pb and Cr contents were determined. In addition, the heavy metal pollution status of the collected soil samples was evaluated by Nemerow index method. [Result] The pollution in Baqiao, Chang'an; Gaoling, Lan- tian, Lintong and Yanliang was of grade I, belonging to clean level; the pollution in Hu County, Weiyang and Zhouzhi was of grade II, near the warning line, belong to relatively clean level. There was no large-area soil heavy metal pollution overall. The investigated areas could be used as production bases of pollution-free agricultural products and even high-quality agricultural products. However, the heavy met- als contents in some individual areas exceeded relevant soil environmental quality standards, and they should be avoided or forbidden during regional planning and selection of production area. [Conclusion] Soil heavy metal pollution of agricultural habitat environment in Xi'an City is generally at good status. Targeting at the future development plan of Xi'an City, feasible and scientific suggestions are put forward.展开更多
Load behavior is one of the most critical factors affecting mills' energy consumption and grinding efficiency, and is greatly affected by the liner profiles. Generally, as liner profiles vary, the ball mill performan...Load behavior is one of the most critical factors affecting mills' energy consumption and grinding efficiency, and is greatly affected by the liner profiles. Generally, as liner profiles vary, the ball mill performances are extremely different. In order to study the performance of the ball mill with regular polygon angle-spiral liners(RPASLs), experimental and numerical studies on three types of RPASLs, including regular quadrilateral, pentagonal and hexagonal, are carried out. For the fine product of desired size, two critical parameters are analyzed: the energy input to the mill per unit mass of the fine product, E*, and the rate of production of the fine product, F*. Results show that the optimal structure of RPASLs is Quadrilateral ASL with an assembled angle of 50°. Under this condition, the specific energy consumption E* has the minimum value of 303 J per fine product and the production rate F* has the maximum value of 0.323. The production rate F* in the experimental result is consistent with the specific collision energy intensity to total collision energy intensity ratio Es/Et in the simulation. The relations between the production rate F* and the specific energy consumption E* with collision energy intensity Es and Et are obtained. The simulation result reveals the essential reason for the experimental phenomenon and correlates the mill performance parameter to the collision energy between balls, which could guide the practical application for Quadrilateral ASL.展开更多
The product family design problem solved by evolutionary algorithms is discussed. A successful product family design method should achieve an optimal tradeoff among a set of competing objectives, which involves maximi...The product family design problem solved by evolutionary algorithms is discussed. A successful product family design method should achieve an optimal tradeoff among a set of competing objectives, which involves maximizing commonality across the family of products and optimizing the performances of each product in the family. A 2-level chromosome structured genetic algorithm (2LCGA) is proposed to solve this class of problems and its performance is analyzed in comparing its results with those obtained with other methods. By interpreting the chromosome as a 2-level linear structure, the variable commonality genetic algorithm (GA) is constructed to vary the amount of platform commonality and automatically searches across varying levels of commonality for the platform while trying to resolve the tradeoff between commonality and individual product performance within the product family during optimization process. By incorporating a commonality assessing index to the problem formulation, the 2LCGA optimize the product platform and its corresponding family of products in a single stage, which can yield improvements in the overall performance of the product family compared with two-stage approaches (the first stage involves determining the best settings for the platform variables and values of unique variables are found for each product in the second stage). The scope of the algorithm is also expanded by introducing a classification mechanism to allow mul- tiple platforms to be considered during product family optimization, offering opportunities for superior overall design by more efficacious tradeoffs between commonality and performance. The effectiveness of 2LCGA is demonstrated through the design of a family of universal electric motors and comparison against previous results.展开更多
Catalytic oxidation of benzene with N_(2)O to phenol over the hierarchical and microporous Fe/ZSM-5-based catalysts in a continuous fixedbed reactor was investigated.The spent catalyst was in-situ regenerated by an ox...Catalytic oxidation of benzene with N_(2)O to phenol over the hierarchical and microporous Fe/ZSM-5-based catalysts in a continuous fixedbed reactor was investigated.The spent catalyst was in-situ regenerated by an oxidative treatment using N_(2)O and in total 10 reaction-regeneration cycles were performed.A 100% N_(2)O conversion,93.3% phenol selectivity,and high initial phenol formation rate of 16.49±0.06mmol_(phenol gcatalyst)^(-1)h^(-1)at time on stream(TOS) of 5 min,and a good phenol productivity of 147.06 mmol_(phenol gcatalyst)^(-1)during catalyst lifetime of 1800 min were obtained on a fresh hierarchical Fe/ZSM-5-Hi2.8 catalyst.With the reaction-regeneration cycle,N_(2)O conversion is fully recovered within TOS of 3 h,moreover,the phenol productivity was decreased ca.2.2±0.8% after each cycle,leading to a total phenol productivity of ca.0.44 ton_(pheol kg_(catalyst)^(-1)estimated for 300 cycles.Catalyst characterizations imply that the coke is rapidly deposited on catalyst surface in the initial TOS of 3 h(0.28 mgc_(gcatalyst)^(-1)min^(-1)) and gradually becomes graphitic during the TOS of 30 h with a slow formation rate of 0.06 mgc g_(catalyst)^(-1)min^(-1).Among others(e.g.,the decrease of textural property and acidity),the nearly complete coverage of the active Fe-O-Al sites by coke accounts for the main catalyst deactivation.Besides these reversible deactivation characteristics related to coking,the irreversible catalyst deactivation is also observed with the reaction-regeneration cycle.The latter is reflected by a further decreased amount of the active Fe-O-Al sites,which agglomerate on catalyst surface with the cycle,likely associated with the hard coke residue that is not completely removed by the regeneration.展开更多
This paper firstly introduces the general situation of cotton planting areas in China and cotton industry in Xinjiang,and the current situation of intellectual property protection of Xinjiang's cotton industry.The...This paper firstly introduces the general situation of cotton planting areas in China and cotton industry in Xinjiang,and the current situation of intellectual property protection of Xinjiang's cotton industry.Then,it analyzes the main problems in its intellectual property protection and high-quality development.On this basis,it comes up with the recommendations for high-quality development of cotton industry in Xinjiang under the strategy of strengthening the country with intellectual property.The recommendations include improving the level of creation of creative intellectual property rights,building an intellectual property rule system in the entire cotton industry chain in Xinjiang,building protected zones for production of major high quality agricultural product cotton,establishing a demonstration zone to undertake the transfer of the domestic cotton textile and garment industry,undertaking education on the sense of community for the Chinese nation in response to the Xinjiang cotton incident,and developing the"Belt and Road"blue market for Xinjiang cotton and its products.展开更多
Chinese agriculture is undergoing a transformation process from traditional agriculture into modern agricultrue.This article discusses how land. labor, fertilizer, machinery etc. are used in agricultural production of...Chinese agriculture is undergoing a transformation process from traditional agriculture into modern agricultrue.This article discusses how land. labor, fertilizer, machinery etc. are used in agricultural production of different regions. reveals the influence of natural conditions and economic level on the utilization of modern agricultural factors. It proposes a system of allocation hoes of regional agricultural productive factors and points out the development stage and tendency of allocation of agricultural productive factors in different regions.展开更多
An approach for the economic analysis of chemical product design is proposed. It takes into account of customers' preference on product quality and economic considerations such as pricing, profit, market share, ca...An approach for the economic analysis of chemical product design is proposed. It takes into account of customers' preference on product quality and economic considerations such as pricing, profit, market share, capital investment, and operating cost. The activities needed to support business decision making – identifying product quality, estimating product cost, calculating financial metrics, and performing make–buy analysis – are discussed.The design of a Ganoderma lucidum dietary supplement, a traditional Chinese medicinal(TCM) product, is used to illustrate all the activities in this approach.展开更多
The traditional explanation was found to be inconsistent with the empirical evidence that mainly caused the agricultural crisis in 1959-1961, so Yifu Lin tried to explain this catastrophe through using Game Theory bas...The traditional explanation was found to be inconsistent with the empirical evidence that mainly caused the agricultural crisis in 1959-1961, so Yifu Lin tried to explain this catastrophe through using Game Theory based on "one-shot game". This paper tested the hypothesis through quantitative test. The results showed that system factors mainly resulted in low productivity, and the natural disaster should not be ignored.展开更多
文摘China is the world’s largest producer of copper processing products as well as the world’s largest copper consumer market.In 2013,China produced more than 13.60 million tons of copper processing products,accounting for60%of the world’s total production.Since then,this proportion has expanded year by year,and will increase to about 66.7%in 2016.Meanwhile,China consumed nearly 11
文摘In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a series which has the factors of the absolute tensor product of the Dirichlet L-functions. This study is a generalization of Akatsuka’s theorem on the Riemann zeta function, and gives a proof of Kurokawa’s prediction proposed in 1992.
基金Supported by Youth Project of the National Social Science Fund of China(22CMZ015).
文摘Hubei Province is the main winter rapeseed producing area in China,and has the national advantage and characteristic industrial cluster of rape.The protection zone for the production of important agricultural products of rapeseed in Hubei Province also ranks first as that in Hunan Province.This paper studied the winter rape industry,the important agricultural product production protection zone of rapeseed,the provincial double-low high-quality rape protection zone and the industrial cluster of rape in Jianghan Plain in Hubei Province,and analyzed the main problems existing in the development of rapeseed production protection zone and industrial cluster of rape.Finally,it came up with strategies including promoting national rape varieties,overcoming the problem of rape"agricultural chip",promoting the"rice+rape"rotation model,and strengthening the protection of intellectual property rights of brand marks.
基金supported by the National Natural Science Foundation of China (51621061, 91425302, 51379208)the Research Projects of the Agricultural Public Welfare Industry in China (201503125)the Discipline Innovative Engineering Plan (111 Program, B14002)
文摘Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Field experiments were conducted to study the responses of water productivity for crop yield(WP_(Y-ET)) and final biomass(WP_(B-ET)) of film-mulched hybrid maize seed production to different irrigation and N treatments in the Hexi Corridor, Northwest China during April to September in 2013 and also during April to September in 2014. Three irrigation levels(70%–65%, 60%–55%, and 50%–45% of the field capacity) combined with three N rates(500, 400, and 300 kg N/hm^2) were tested in 2013. The N treatments were adjusted to 500, 300, and 100 kg N/hm^2 in 2014. Results showed that the responses of WP_(Y-ET) and WP_(B-ET) to different irrigation amounts were different. WP_(Y-ET) was significantly reduced by lowering irrigation amounts while WP_(B-ET) stayed relatively insensitive to irrigation amounts. However, WP_(Y-ET) and WP_(B-ET) behaved consistently when subjected to different N treatments. There was a slight effect of reducing N input from 500 to 300 kg/hm^2 on the WP_(Y-ET) and WP_(B-ET), however, when reducing N input to 100 kg/hm^2, the values of WP_(Y-ET) and WP_(B-ET) were significantly reduced. Water is the primary factor and N is the secondary factor in determining both yield(Y) and final biomass(B). Partial factor productivity from applied N(PFP_N) was the maximum under the higher irrigation level and in lower N rate(100–300 kg N/hm^2) in both years(2013 and 2014). Lowering the irrigation amount significantly reduced evapotranspiration(ET), but ET did not vary with different N rates(100–500 kg N/hm^2). Both Y and B had robust linear relationships with ET, but the correlation between B and ET(R^2=0.8588) was much better than that between Y and ET(R^2=0.6062). When ET increased, WP_(Y-ET) linearly increased and WP_(B-ET) decreased. Taking the indices of Y, B, WP_(Y-ET), WP_(B-ET) and PFP_N into account, a higher irrigation level(70%–65% of the field capacity) and a lower N rate(100–300 kg N/hm^2) are recommended to be a proper irrigation and N application strategy for plastic film-mulched hybrid maize seed production in arid Northwest China.
文摘The platform of distributed design and resource sharing is important for medium-sized and small companies in developing products to improve competitiveness. As a background of creative product design, a knowledge model based on product collaborative innovation development of products (CIDP) is proposed. Characteristics of CIDP are analyzed, and the framework and key technologies of the CIDP-platform based knowledge studied. Through integration of existing system and interface designs, a development platform has been built to support the PCID within knowledge-based engineering (KBE). An example is presented, indicating that the prototype system is maneuverable and practical.
基金the project “ARCHAEA - Feeding strategies to reduce methane emissions from dairy cows” – Veneto Region Rural Development Programme (RDP) 2007–2013
文摘Background: Modification of chemical composition of diets fed to dairy cows might be a good strategy to reduce methane(CH4) production in the rumen. Notable reductions of CH4 production compared to conventional highroughages rations were more frequently observed for very concentrated diets or when fat supplements were used. In these cases, the reduction in the gas emission was mainly a consequence of an overall impairment of rumen function with a reduction of fiber digestibility. These strategies do not always comply with feeding standards used in intensive dairy farms and they are usually not applied owing to the risks of negative health and economic consequences.Thus, the present study evaluated the effects of seven commercial diets with contents of neutral detergent fiber(NDF),protein and lipids ranging 325 to 435 g/kg DM, 115 to 194 g/kg DM, and 26 to 61 g/kg DM, respectively, on in vitro degradability, gas(GP), and CH4 production.Results: In this experiment, changes in the dietary content of NDF, crude protein(CP) and lipids were always obtained at the expense or in favor of starch. A decreased of the dietary NDF content increased NDF(NDFd) and true DM(TDMd) degradability, and increased CH4 production per g of incubated DM(P 〈 0.001), but not that per g of TDMd. An increase of the dietary CP level did not change in vitro NDFd and TDMd, decreased GP per g of incubated DM(P 〈 0.001), but CH4 production per g of TDMd was not affected. An increased dietary lipid content reduced NDFd, TDMd,and GP per g of incubated DM, but it had no consequence on CH4 production per g of TDMd.Conclusions: It was concluded that, under commercial conditions, changes in dietary composition would produce small or negligible alterations of CH4 production per unit of TDMd, but greater differences in GP and CH4 production would be expected when these amounts are expressed per unit of DM intake. The use of TDMd as a standardizing parameter is proposed to account for possible difference in DM intake and productivity.
基金financed by the project “ARCHAEA- Feeding strategies to reduce methane emissions from dairy cows,”Veneto Region Rural Development Programme (RDP) 2007–2013 “Progetto di Ateneo cod. CPDA 155250”, University of Padova, Italy
文摘Effects of some methodological factors on in vitro measures of gas production(GP, mL/g DM), CH4production(mL/g DM) and proportion(% CH4 on total GP) were investigated by meta-analysis. These factors were considered:pressure in the GP equipment(0 = constant; 1 = increasing), incubation time(0 = 24; 1 = ≥ 48 h), time of rumen fluid collection(0 = before feeding; 1 = after feeding of donor animals), donor species of rumen fluid(0 = sheep; 1 =bovine), presence of N in the buffer solution(0 = presence; 1 = absence), and ratio between amount of buffered rumen fluid and feed sample(BRF/FS; 0 = ≤ 130 mL/g DM; 1 = 130–140 mL/g DM; 2 = ≥ 140 mL/g DM). The NDF content of feed sample incubated(NDF) was considered as a continuous variable. From an initial database of 105 papers, 58 were discarded because one of the above-mentioned factors was not stated. After discarding 17 papers,the final dataset comprised 30 papers(339 observations). A preliminary mixed model analysis was carried out on experimental data considering the study as random factor. Variables adjusted for study effect were analyzed using a backward stepwise analysis including the above-mentioned variables. The analysis showed that the extension of incubation time and reduction of NDF increased GP and CH4 values. Values of GP and CH4 also increased when rumen fluid was collected after feeding compared to before feeding(+26.4 and +9.0 mL/g DM, for GP and CH4),from bovine compared to sheep(+32.8 and +5.2 mL/g DM, for GP and CH4), and when the buffer solution did not contain N(+24.7 and +6.7 mL/g DM for GP and CH4). The increase of BRF/FS ratio enhanced GP and CH4production(+7.7 and +3.3 mL/g DM per each class of increase, respectively). In vitro techniques for measuring GP and CH4 production are mostly used as screening methods, thus a full standardization of such techniques is not feasible. However, a greater harmonization of analytical procedures(i.e., a reduction in the number of available protocols) would be useful to facilitate comparison between results of different experiments.
基金Supported by the Knowledge Innovation Research Program,Chinese Academy of Sciences (KSCX2-SW-105)
文摘Figs (Moracea: Ficus) and fig wasps (Hymenoptera: Chlocloids: Agaonideae) depend on each other to complete their reproduction. Monoecious fig species and their pollinating wasps are in conflict over the use of fig ovaries which can either produce one seed or one wasp. From observation on Ficus virens Ait., we showed that female flowers with outer layer of ovaries (near to the wall of syconium) had no significant difference from that with inner and interval layer of ovaries (near to the syconium cavity), in which most seeds and wasps were produced. This meant that fig tree provided the same potential resource for seed and wasps production. Observation indicated that there was usually only one foundress in syconium at female flower phase and no com- petition pollinators. Measurement of the style length of female flowers and the ovipositor of pollinators indicated that most ovaries could be reached by pollinator’s ovipositor. However, at the male flower phase, production of seeds was significantly more than that of wasps including non-pollinating wasps but there was no significant difference between seed and pollinating wasp production when without non-pollinating wasps produced. This result indicated that non-pollinating wasps competed ovaries not with seeds but with pollinating wasps for ovipositing. Bagged experiment showed that the sampling fig species was not self-sterile which was important for figs and wasps to survive bad season. Seed production in self-pollinated figs was not significantly different from total wasps in- cluding non-pollinating ones. This might be related with the weaker competition among wasps since bagged figs were not easy to reach by wasps from outside.
文摘[Objective] This study aimed to understand and grasp the soil heavy metal pollution status of agricultural habitat environment in Xi'an City. [Method] The soil heavy metal pollution status of pollution-free agricultural products-producing areas in 9 counties (districts) of Xi'an City was investigated. A total of 609 soil samples were collected, and their Cd, Hg, As, Pb and Cr contents were determined. In addition, the heavy metal pollution status of the collected soil samples was evaluated by Nemerow index method. [Result] The pollution in Baqiao, Chang'an; Gaoling, Lan- tian, Lintong and Yanliang was of grade I, belonging to clean level; the pollution in Hu County, Weiyang and Zhouzhi was of grade II, near the warning line, belong to relatively clean level. There was no large-area soil heavy metal pollution overall. The investigated areas could be used as production bases of pollution-free agricultural products and even high-quality agricultural products. However, the heavy met- als contents in some individual areas exceeded relevant soil environmental quality standards, and they should be avoided or forbidden during regional planning and selection of production area. [Conclusion] Soil heavy metal pollution of agricultural habitat environment in Xi'an City is generally at good status. Targeting at the future development plan of Xi'an City, feasible and scientific suggestions are put forward.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675484,51275474,51505424)Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LZ12E05002,LY15E050019)
文摘Load behavior is one of the most critical factors affecting mills' energy consumption and grinding efficiency, and is greatly affected by the liner profiles. Generally, as liner profiles vary, the ball mill performances are extremely different. In order to study the performance of the ball mill with regular polygon angle-spiral liners(RPASLs), experimental and numerical studies on three types of RPASLs, including regular quadrilateral, pentagonal and hexagonal, are carried out. For the fine product of desired size, two critical parameters are analyzed: the energy input to the mill per unit mass of the fine product, E*, and the rate of production of the fine product, F*. Results show that the optimal structure of RPASLs is Quadrilateral ASL with an assembled angle of 50°. Under this condition, the specific energy consumption E* has the minimum value of 303 J per fine product and the production rate F* has the maximum value of 0.323. The production rate F* in the experimental result is consistent with the specific collision energy intensity to total collision energy intensity ratio Es/Et in the simulation. The relations between the production rate F* and the specific energy consumption E* with collision energy intensity Es and Et are obtained. The simulation result reveals the essential reason for the experimental phenomenon and correlates the mill performance parameter to the collision energy between balls, which could guide the practical application for Quadrilateral ASL.
基金This project is supported by National Natural Science Foundation of China(No.70471022,No.70501021)the Joint Research Scheme of National Natural Science Foundation of China(No,70418013) Hong Kong Research Grant Council,China(No.N_HKUST625/04).
文摘The product family design problem solved by evolutionary algorithms is discussed. A successful product family design method should achieve an optimal tradeoff among a set of competing objectives, which involves maximizing commonality across the family of products and optimizing the performances of each product in the family. A 2-level chromosome structured genetic algorithm (2LCGA) is proposed to solve this class of problems and its performance is analyzed in comparing its results with those obtained with other methods. By interpreting the chromosome as a 2-level linear structure, the variable commonality genetic algorithm (GA) is constructed to vary the amount of platform commonality and automatically searches across varying levels of commonality for the platform while trying to resolve the tradeoff between commonality and individual product performance within the product family during optimization process. By incorporating a commonality assessing index to the problem formulation, the 2LCGA optimize the product platform and its corresponding family of products in a single stage, which can yield improvements in the overall performance of the product family compared with two-stage approaches (the first stage involves determining the best settings for the platform variables and values of unique variables are found for each product in the second stage). The scope of the algorithm is also expanded by introducing a classification mechanism to allow mul- tiple platforms to be considered during product family optimization, offering opportunities for superior overall design by more efficacious tradeoffs between commonality and performance. The effectiveness of 2LCGA is demonstrated through the design of a family of universal electric motors and comparison against previous results.
基金Financial support by the Specialized Research Fund for Doctoral Program of Higher Education,China (No.20120010110003)。
文摘Catalytic oxidation of benzene with N_(2)O to phenol over the hierarchical and microporous Fe/ZSM-5-based catalysts in a continuous fixedbed reactor was investigated.The spent catalyst was in-situ regenerated by an oxidative treatment using N_(2)O and in total 10 reaction-regeneration cycles were performed.A 100% N_(2)O conversion,93.3% phenol selectivity,and high initial phenol formation rate of 16.49±0.06mmol_(phenol gcatalyst)^(-1)h^(-1)at time on stream(TOS) of 5 min,and a good phenol productivity of 147.06 mmol_(phenol gcatalyst)^(-1)during catalyst lifetime of 1800 min were obtained on a fresh hierarchical Fe/ZSM-5-Hi2.8 catalyst.With the reaction-regeneration cycle,N_(2)O conversion is fully recovered within TOS of 3 h,moreover,the phenol productivity was decreased ca.2.2±0.8% after each cycle,leading to a total phenol productivity of ca.0.44 ton_(pheol kg_(catalyst)^(-1)estimated for 300 cycles.Catalyst characterizations imply that the coke is rapidly deposited on catalyst surface in the initial TOS of 3 h(0.28 mgc_(gcatalyst)^(-1)min^(-1)) and gradually becomes graphitic during the TOS of 30 h with a slow formation rate of 0.06 mgc g_(catalyst)^(-1)min^(-1).Among others(e.g.,the decrease of textural property and acidity),the nearly complete coverage of the active Fe-O-Al sites by coke accounts for the main catalyst deactivation.Besides these reversible deactivation characteristics related to coking,the irreversible catalyst deactivation is also observed with the reaction-regeneration cycle.The latter is reflected by a further decreased amount of the active Fe-O-Al sites,which agglomerate on catalyst surface with the cycle,likely associated with the hard coke residue that is not completely removed by the regeneration.
基金Supported by Foundation for Key Program of Hubei Province (LX201827)
文摘This paper firstly introduces the general situation of cotton planting areas in China and cotton industry in Xinjiang,and the current situation of intellectual property protection of Xinjiang's cotton industry.Then,it analyzes the main problems in its intellectual property protection and high-quality development.On this basis,it comes up with the recommendations for high-quality development of cotton industry in Xinjiang under the strategy of strengthening the country with intellectual property.The recommendations include improving the level of creation of creative intellectual property rights,building an intellectual property rule system in the entire cotton industry chain in Xinjiang,building protected zones for production of major high quality agricultural product cotton,establishing a demonstration zone to undertake the transfer of the domestic cotton textile and garment industry,undertaking education on the sense of community for the Chinese nation in response to the Xinjiang cotton incident,and developing the"Belt and Road"blue market for Xinjiang cotton and its products.
基金This article is based on the phase achievement of national !"9th-Five-Year Plan" key project 96-013-01-01
文摘Chinese agriculture is undergoing a transformation process from traditional agriculture into modern agricultrue.This article discusses how land. labor, fertilizer, machinery etc. are used in agricultural production of different regions. reveals the influence of natural conditions and economic level on the utilization of modern agricultural factors. It proposes a system of allocation hoes of regional agricultural productive factors and points out the development stage and tendency of allocation of agricultural productive factors in different regions.
文摘An approach for the economic analysis of chemical product design is proposed. It takes into account of customers' preference on product quality and economic considerations such as pricing, profit, market share, capital investment, and operating cost. The activities needed to support business decision making – identifying product quality, estimating product cost, calculating financial metrics, and performing make–buy analysis – are discussed.The design of a Ganoderma lucidum dietary supplement, a traditional Chinese medicinal(TCM) product, is used to illustrate all the activities in this approach.
基金This paper is supported by National Nature Science Foundation of China (No. 70071041)
文摘The traditional explanation was found to be inconsistent with the empirical evidence that mainly caused the agricultural crisis in 1959-1961, so Yifu Lin tried to explain this catastrophe through using Game Theory based on "one-shot game". This paper tested the hypothesis through quantitative test. The results showed that system factors mainly resulted in low productivity, and the natural disaster should not be ignored.