The hardening on surface of complex profles such as thread and spline manufactured by cold rolling can efectively improve the mechanical properties and surface quality of rolled parts. The distribution of hardness in ...The hardening on surface of complex profles such as thread and spline manufactured by cold rolling can efectively improve the mechanical properties and surface quality of rolled parts. The distribution of hardness in superfcial layer is closely related to the deformation by rolling. To establish the suitable correlation model for describing the relationship between strain and hardness during cold rolling forming process of complex profles is helpful to the optimization of rolling parameters and improvement of rolling process. In this study, a physical analog experiment refecting the uneven deformation during complex-profle rolling process has been extracted and designed, and then the large date set (more than 400 data points) of training samples refecting the local deformation characteristics of complexprofle rolling have been obtained. Several types of polynomials and power functions were adopted in regression analysis, and the regression correlation models of 45# steel were evaluated by the single-pass and multi-pass physical analog experiments and the complex-profle rolling experiment. The results indicated that the predicting accuracy of polynomial regression model is better in the strain range (i.e., ε < 1.2) of training samples, and the correlation relationship between strain and hardness out strain range (i.e., ε > 1.2) of training samples can be well described by power regression model;so the correlation relationship between strain and hardness during complex-profle rolling process of 45# steel can be characterized by a segmented function such as third-order polynomial in the range ε < 1.2 and power function with a ftting constant in the range ε > 1.2;and the predicting error of the regression model by segmented function is less than 10%.展开更多
A three-dimensional conjugate tooth surface design method for Harmonic Drive with a double-circular-arc tooth profle is proposed. The radial deformation function of the fexspline (FS), obtained through Finite Element ...A three-dimensional conjugate tooth surface design method for Harmonic Drive with a double-circular-arc tooth profle is proposed. The radial deformation function of the fexspline (FS), obtained through Finite Element (FE) analysis, is incorporated into the kinematics model. By analyzing the FS tooth enveloping process, the optimization of the overlapping conjugate tooth profle is achieved. By utilizing the hobbing process, the three-dimensional machinable tooth surface of FS can be acquired. Utilizing the coning deformation of the FS, simulations are conducted to analyze the multi-section assembly and meshing motion of the machinable tooth surface. The FE method is utilized to analyze and compare the loaded contact characteristics. Results demonstrate that the proposed design method can achieve an internal gear pair consisting of a circular spline with a spur gear tooth surface and the FS with a machinable tooth surface. With the rated torque, approximately 24% of the FS teeth are engaged in meshing, and more than 4/5 of the tooth surface in the axial direction carries the load. The contact patterns, maximum contact pressure, and transmission error of the machinable tooth surface are 227.2%, 40.67%, and 71.24% of those on the spur gear tooth surface, respectively. It clearly demonstrates exceptional transmission performance.展开更多
Background: Chicken is the most consumed meat worldwide and the industry has been facing challenging myopathies. Wooden breast(WB), which is often accompanied by white striping(WS), is a serious myopathy adversely aff...Background: Chicken is the most consumed meat worldwide and the industry has been facing challenging myopathies. Wooden breast(WB), which is often accompanied by white striping(WS), is a serious myopathy adversely affecting meat quality of breast muscles. The underlying lipid metabolic mechanism of WB affected broilers is not fully understood.Results: A total of 150 chickens of a white-feathered, fast-growing pure line were raised and used for the selection of WB, WB + WS and control chickens. The lipids of the breast muscle, liver, and serum from different chickens were extracted and measured using ultra performance liquid chromatography(UPLC) plus Q-Exactive Orbitrap tandem mass spectrometry. In the breast, 560 lipid molecules were identified. Compared to controls, 225/225 of 560 lipid molecules(40.2%) were identified with differential abundance(DA), including 92/100 significantly increased neutral lipids and 107/98 decreased phospholipids in the WB/WB + WS groups, respectively. The content of monounsaturated fatty acids(MUFA) was significantly higher, and the polyunsaturated fatty acids(PUFA) and saturated fatty acids(SFA) were significantly lower in the affected breasts. In the liver, 434 lipid molecules were identified, and 39/61 DA lipid molecules(6.7%/14.1%) were detected in the WB and WB + WS groups, respectively. In the serum, a total of 529 lipid molecules were identified and 4/44 DA lipid molecules(0.8%/8.3%) were detected in WB and WB + WS group, respectively. Compared to controls, the content of MUFAs in the serum and breast of the WB + WS group were both significantly increased, and the content of SFAs in two tissues were both significantly decreased. Only five lipid molecules were consistently increased in both liver and serum in WB + WS group.Conclusions: We have found for the first time that the dominant lipid profile alterations occurred in the affected breast muscle. The relative abundance of 40.2% of lipid molecules were changed and is characteristic of increased neutral lipids and decreased phospholipids in the affected breasts. Minor changes of lipid profiles in the liver and serum of the affected groups were founded. Comprehensive analysis of body lipid metabolism indicated that the abnormal lipid profile of WB breast may be independent of the liver metabolism.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51675415)Key Research and Development Program of Shaanxi,China(Grant No.2021GXLH-Z-049).
文摘The hardening on surface of complex profles such as thread and spline manufactured by cold rolling can efectively improve the mechanical properties and surface quality of rolled parts. The distribution of hardness in superfcial layer is closely related to the deformation by rolling. To establish the suitable correlation model for describing the relationship between strain and hardness during cold rolling forming process of complex profles is helpful to the optimization of rolling parameters and improvement of rolling process. In this study, a physical analog experiment refecting the uneven deformation during complex-profle rolling process has been extracted and designed, and then the large date set (more than 400 data points) of training samples refecting the local deformation characteristics of complexprofle rolling have been obtained. Several types of polynomials and power functions were adopted in regression analysis, and the regression correlation models of 45# steel were evaluated by the single-pass and multi-pass physical analog experiments and the complex-profle rolling experiment. The results indicated that the predicting accuracy of polynomial regression model is better in the strain range (i.e., ε < 1.2) of training samples, and the correlation relationship between strain and hardness out strain range (i.e., ε > 1.2) of training samples can be well described by power regression model;so the correlation relationship between strain and hardness during complex-profle rolling process of 45# steel can be characterized by a segmented function such as third-order polynomial in the range ε < 1.2 and power function with a ftting constant in the range ε > 1.2;and the predicting error of the regression model by segmented function is less than 10%.
基金Supported by Guangdong Provincial Key-Area Research and Development Program(Grant No.2019B090917002).
文摘A three-dimensional conjugate tooth surface design method for Harmonic Drive with a double-circular-arc tooth profle is proposed. The radial deformation function of the fexspline (FS), obtained through Finite Element (FE) analysis, is incorporated into the kinematics model. By analyzing the FS tooth enveloping process, the optimization of the overlapping conjugate tooth profle is achieved. By utilizing the hobbing process, the three-dimensional machinable tooth surface of FS can be acquired. Utilizing the coning deformation of the FS, simulations are conducted to analyze the multi-section assembly and meshing motion of the machinable tooth surface. The FE method is utilized to analyze and compare the loaded contact characteristics. Results demonstrate that the proposed design method can achieve an internal gear pair consisting of a circular spline with a spur gear tooth surface and the FS with a machinable tooth surface. With the rated torque, approximately 24% of the FS teeth are engaged in meshing, and more than 4/5 of the tooth surface in the axial direction carries the load. The contact patterns, maximum contact pressure, and transmission error of the machinable tooth surface are 227.2%, 40.67%, and 71.24% of those on the spur gear tooth surface, respectively. It clearly demonstrates exceptional transmission performance.
基金supported by grants from the National Natural Science Foundation of China(31772591)the Agricultural Science and Technology Innovation Program(CAAS-ZDRW202005)the China Agriculture Research System of MOF and MARA(CARS-41).
文摘Background: Chicken is the most consumed meat worldwide and the industry has been facing challenging myopathies. Wooden breast(WB), which is often accompanied by white striping(WS), is a serious myopathy adversely affecting meat quality of breast muscles. The underlying lipid metabolic mechanism of WB affected broilers is not fully understood.Results: A total of 150 chickens of a white-feathered, fast-growing pure line were raised and used for the selection of WB, WB + WS and control chickens. The lipids of the breast muscle, liver, and serum from different chickens were extracted and measured using ultra performance liquid chromatography(UPLC) plus Q-Exactive Orbitrap tandem mass spectrometry. In the breast, 560 lipid molecules were identified. Compared to controls, 225/225 of 560 lipid molecules(40.2%) were identified with differential abundance(DA), including 92/100 significantly increased neutral lipids and 107/98 decreased phospholipids in the WB/WB + WS groups, respectively. The content of monounsaturated fatty acids(MUFA) was significantly higher, and the polyunsaturated fatty acids(PUFA) and saturated fatty acids(SFA) were significantly lower in the affected breasts. In the liver, 434 lipid molecules were identified, and 39/61 DA lipid molecules(6.7%/14.1%) were detected in the WB and WB + WS groups, respectively. In the serum, a total of 529 lipid molecules were identified and 4/44 DA lipid molecules(0.8%/8.3%) were detected in WB and WB + WS group, respectively. Compared to controls, the content of MUFAs in the serum and breast of the WB + WS group were both significantly increased, and the content of SFAs in two tissues were both significantly decreased. Only five lipid molecules were consistently increased in both liver and serum in WB + WS group.Conclusions: We have found for the first time that the dominant lipid profile alterations occurred in the affected breast muscle. The relative abundance of 40.2% of lipid molecules were changed and is characteristic of increased neutral lipids and decreased phospholipids in the affected breasts. Minor changes of lipid profiles in the liver and serum of the affected groups were founded. Comprehensive analysis of body lipid metabolism indicated that the abnormal lipid profile of WB breast may be independent of the liver metabolism.