The data-driven methods extract the feature information from data to build system models, which enable estimation and identification of the systems and can be utilized for prognosis and health management(PHM). However...The data-driven methods extract the feature information from data to build system models, which enable estimation and identification of the systems and can be utilized for prognosis and health management(PHM). However, most data-driven models are still black-box models that cannot be interpreted. In this study, we use the neural ordinary differential equations(ODEs), especially the inherent computational relationships of a system added to the loss function calculation, to approximate the governing equations. In addition, a new strategy for identifying the local parameters of the system is investigated, which can be utilized for system parameter identification and damage detection. The numerical and experimental examples presented in the paper demonstrate that the strategy has high accuracy and good local parameter identification. Moreover, the proposed method has the advantage of being interpretable. It can directly approximate the underlying governing dynamics and be a worthwhile strategy for system identification and PHM.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 12132010 and12021002)the Natural Science Foundation of Tianjin of China (No. 19JCZDJC38800)。
文摘The data-driven methods extract the feature information from data to build system models, which enable estimation and identification of the systems and can be utilized for prognosis and health management(PHM). However, most data-driven models are still black-box models that cannot be interpreted. In this study, we use the neural ordinary differential equations(ODEs), especially the inherent computational relationships of a system added to the loss function calculation, to approximate the governing equations. In addition, a new strategy for identifying the local parameters of the system is investigated, which can be utilized for system parameter identification and damage detection. The numerical and experimental examples presented in the paper demonstrate that the strategy has high accuracy and good local parameter identification. Moreover, the proposed method has the advantage of being interpretable. It can directly approximate the underlying governing dynamics and be a worthwhile strategy for system identification and PHM.