With the development of large liquid cargo ships,liquid tank sloshing has gradually become a hot research topic in the area of shipping and ocean Engineering.Liquid tank sloshing,characterized by strong nonlinearity a...With the development of large liquid cargo ships,liquid tank sloshing has gradually become a hot research topic in the area of shipping and ocean Engineering.Liquid tank sloshing,characterized by strong nonlinearity and randomness,not only affects the stability of the ship but also generates a huge impact force on the wall of the tank.To further investigate liquid tank sloshing,a comprehensive review is given on the research process of the most focused subjects of liquid sloshing.Summarizing the existing research will help to identify issues in the current field and provide useful references.The methods for investigating sloshing,the research progress and the situations worldwide are discussed.The advantages and defects of experiments and numerical simulations are also explored.The problems which need to be explored in the future are subsequently proposed.展开更多
This paper reviews the progress on nano-aperture vertical-cavity surface-emitting lasers (VCSELs). The design, fabrication, and polarization control of nano-aperture VCSELs are reviewed. With the nanoaperture evolvi...This paper reviews the progress on nano-aperture vertical-cavity surface-emitting lasers (VCSELs). The design, fabrication, and polarization control of nano-aperture VCSELs are reviewed. With the nanoaperture evolving from conventional circular and square aperture to unique C-shaped, H-shaped, I-shaped, and bowtie-shaped aperture, both the near-field intensity and near-field beam confinement from nanoaperture VCSELs are significantly improved. As a high-intensity compact light source with sub-100- nm spot size, nano-aperture VCSELs are promising to realize many new near-field optical systems and applications.展开更多
Subject Code:A05 A progress review article on the dark matter direct detection experiments,authored by Prof.Liu Jianglai(刘江来),Dr.Chen Xun(谌勋)and Prof.Ji Xiangdong(季向东,corresponding author)from the Shanghai Jia...Subject Code:A05 A progress review article on the dark matter direct detection experiments,authored by Prof.Liu Jianglai(刘江来),Dr.Chen Xun(谌勋)and Prof.Ji Xiangdong(季向东,corresponding author)from the Shanghai Jiao Tong University,was published online in Nature Physics(2017,13:212—216)recently.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.52271271)the National Key Research and Development Program of China(Grant No.2022YFE0104500)+1 种基金“Pioneer”and“Leading Goose”R&D Program of Zhejiang Province(Grant No.2022C03023)Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ17E090003)。
文摘With the development of large liquid cargo ships,liquid tank sloshing has gradually become a hot research topic in the area of shipping and ocean Engineering.Liquid tank sloshing,characterized by strong nonlinearity and randomness,not only affects the stability of the ship but also generates a huge impact force on the wall of the tank.To further investigate liquid tank sloshing,a comprehensive review is given on the research process of the most focused subjects of liquid sloshing.Summarizing the existing research will help to identify issues in the current field and provide useful references.The methods for investigating sloshing,the research progress and the situations worldwide are discussed.The advantages and defects of experiments and numerical simulations are also explored.The problems which need to be explored in the future are subsequently proposed.
文摘This paper reviews the progress on nano-aperture vertical-cavity surface-emitting lasers (VCSELs). The design, fabrication, and polarization control of nano-aperture VCSELs are reviewed. With the nanoaperture evolving from conventional circular and square aperture to unique C-shaped, H-shaped, I-shaped, and bowtie-shaped aperture, both the near-field intensity and near-field beam confinement from nanoaperture VCSELs are significantly improved. As a high-intensity compact light source with sub-100- nm spot size, nano-aperture VCSELs are promising to realize many new near-field optical systems and applications.
文摘Subject Code:A05 A progress review article on the dark matter direct detection experiments,authored by Prof.Liu Jianglai(刘江来),Dr.Chen Xun(谌勋)and Prof.Ji Xiangdong(季向东,corresponding author)from the Shanghai Jiao Tong University,was published online in Nature Physics(2017,13:212—216)recently.