To address the hazardous by-product of zinc smelting and resource utilization of jarosite residue,this study applies an electric field-assisted hot acid treatment to completely recycle iron(Fe).This innovative approac...To address the hazardous by-product of zinc smelting and resource utilization of jarosite residue,this study applies an electric field-assisted hot acid treatment to completely recycle iron(Fe).This innovative approach aims to enhance the leaching efficiency of Fe from jarosite residue.The introduction of an electric field changes the charge distribution on the surface of the particles to enhance ions and electrons exchange and promotes the collision between particles to strengthen reaction kinetics.Based on the above,the leaching efficiency of Fe in jarosite under sulfuric acid attack has improved observably.The result shows that Fe leaching efficiency reaches 98.83%,which is increased by 28%under the optimal experimental conditions:current density of 30 mA·cm^(-2),H_(2)SO_(4) concentration of 1.5 mol·L^(-1),solid-liquid ratio of 70 g·L^(-1),temperature of 80℃ and time of 12 h.Leaching kinetics calculations show that the apparent activation energy is 16.97 kJ·mol^(-1) and the leaching of jarosite residue is controlled by a mixture of chemical reaction and diffusion,as well as the temperature and concentration of the leaching solution have an influence on leaching.This work provides a feasible idea for the efficient leaching of Fe from jarosite residue.展开更多
The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction ...The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction of cyanide with pyrite and the decyanation of pyrite cyanide residue were analyzed.Results revealed that high pH value,high cyanide concentration,and high pyrite dosage promoted the interaction of cyanide with pyrite.The cyanidation of pyrite was pseudo-second-order with respect to cyanide.The decyanation of pyrite cyanide residue by Na_(2)SO_(3)/air oxidation was performed.The cyanide removal efficiency was 83.9% after 1 h of reaction time under the optimal conditions of pH value of 11.2,SO_(3)^(2-) dosage of 22 mg·g^(-1),and air flow rate of 1.46 L·min^(-1).X-ray photoelectron spectroscopy analysis of the pyrite samples showed the formation of Fe(Ⅲ)and FeSO_(4) during the cyanidation process.The cyanide that adsorbed on the pyrite surface after cyanidation mainly existed in the forms of free cyanide(CN^(-))and ferrocyanide(Fe(CN)_(6)^(4-)),which were effectively removed by Na_(2)SO_(3)/air oxidation.During the decyanation process,air intake promoted pyrite oxidation and weakened cyanide adsorption on the pyrite surface.This study has practical significance for gold enterprises aiming to mitigate the environmental impact related to cyanide residues.展开更多
The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with tradit...The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with traditional supercapacitors and lithium-ion batteries,respectively.However,the ion kinetics mismatch between cathode and anode leads to unsatisfied cycling lifetime and anode degradation.Tremendous efforts have been devoted to solving the abovementioned issue.One promising strategy is altering high conductive hard carbon anode with excellent structural stability to match with activated carbon cathode,assembling dual-carbon LIC.In this contribution,one-pot in-situ expansion and heteroatom doping strategy was adopted to prepare sheet-like hard carbon,while activated carbon was obtained involving activation.Ammonium persulfate was used as expanding and doping agent simultaneously.While furfural residues (FR) were served as carbon precursor.The resulting hard carbon (FRNS-HC) and activated carbon (FRNS-AC)show excellent electrochemical performance as negative and positive electrodes in a lithium-ion battery (LIB).To be specific,374.2 m Ah g^(-1)and 123.1 m Ah g^(-1)can be achieved at 0.1 A g^(-1)and 5 A g^(-1)when FRNS-HC was tested as anode.When combined with a highly porous carbon cathode (S_(BET)=2961 m^(2)g^(-1)) synthesized from the same precursor,the LIC showed high specific energy of147.67 Wh kg^(-1)at approximately 199.93 W kg^(-1),and outstanding cycling life with negligible capacitance fading over 1000 cycles.This study could lead the way for the development of heteroatom-doped porous carbon nanomaterials applied to Li-based energy storage applications.展开更多
With a view to improving rabbit production performance, a trial on the chemical composition of pineapple press residue (Ananas comosus) and the effect of its incorporation in the ration on rabbit growth performance (O...With a view to improving rabbit production performance, a trial on the chemical composition of pineapple press residue (Ananas comosus) and the effect of its incorporation in the ration on rabbit growth performance (Oryctolagus cuniculus) was carried out at the KUATE Cunicole Farm in Bandjoun, in Western Cameroon. To do this, 36 rabbits of the local breed, aged 53 days with an average weight of 1337 ± 119 g were distributed and randomly assigned to 3 experimental rations corresponding respectively to treatments or batches T0, T1 and T2. The animals in treatment T0 received a ration containing no pineapple press residue, while those in treatments T1 and T2 received a ration containing 20% and 40% pineapple press residue, respectively. These residues were dried and ground for chemical composition analysis. The feed served as well as refusals from the previous day were weighed each morning to assess feed intake. The animals were weighed every 7 days to assess weight performance. At the end of the trial which lasted 7 weeks, the animals were fasted for 24 hours, then sacrificed to evaluate carcass characteristics and the relative weights of some digestive organs. The results of this study showed that pineapple press residues had a high crude fiber content (19.2%) and energy (2500 Kcal/kg DM). Their incorporation had no significant effect on feed intake and feed conversion ratio. The average live weight, weight gain and average daily weight gain of the animals receiving the ration with 20% inclusion of pineapple press residue were comparable to those of the control group and significantly higher than those of animals fed with 40% inclusion of pineapple residue. The highest carcass yields were obtained with rabbits fed 20% pineapple press residue in their ration. The cost of feed for the production of a kilogram live weight of rabbit tends to decrease with the ration incorporated with 20% pineapple press residue. Pineapple press residues constitute a by-product that can be recycled and their incorporation at 20% can increase rabbit growth performance and reduce production costs.展开更多
Soybean production systems that return plant residues to the soil surface are gaining in popularity. As these practices become more widespread, more crop and weed residues are being introduced into the upper soil prof...Soybean production systems that return plant residues to the soil surface are gaining in popularity. As these practices become more widespread, more crop and weed residues are being introduced into the upper soil profile. Greenhouse studies were conducted to determine the effects of varying concentrations of Palmer amaranth and pitted morningglory plant residues (aboveground portion of the plant) on soybean production. The study was arranged in a completely randomized experimental design with five treatments and five replications. Palmer amaranth and pitted morningglory residues were incorporated into soil at 20,000, 40,000, 80,000 and 160,000 ppm. Inert plastic residue at the same residue levels was included as a check. Soybean dry weight, leaf area and leaf tissue nutrient content were recorded during the study. A decrease in soybean dry weight and leaf area was observed as Palmer amaranth residue in the soil increased. Palmer amaranth residues of 160,000 ppm and 80,000 ppm in the soil significantly reduced soybean dry weight by 69% and 59%, respectively, and soybean leaf area by 60% and 57%, respectively. In contrast, pitted morningglory and inert plastic residues had no observable effect on soybean growth and development. This study demonstrated Palmer amaranth residues in the soil impacted early season soybean growth and development.展开更多
The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydro...The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydrogen is one of the sustainable management strategies for ubiquitous crop residues.Production of green hydrogen from crop residue sources will contribute to deepening access to clean and affordable energy,mitigating climate change,and ensuring environmental sustainability.However,the deployment of conventional thermochemical technologies for the conversion of crop residues to green hydrogen is costly,requires long residence time,produces low-quality products,and therefore needs to be upgraded.The current review examines the conventional,advanced,and integrated thermochemical conversion technologies for crop residues for green hydrogen production.After a brief overview of the conventional thermochemical techniques,the review delves into the broad narration of advanced thermochemical technologies including catalytic pyrolysis,microwave pyrolysis,co-pyrolysis,hyropyrolysis,and autothermal pyrolysis.The study advocates the deployment of integrated pyrolysis,anaerobic digestion,pyrolysis,and gasification technologies will ensure scalability,decomposition of recalcitrant feedstocks,and generation of high grade green hydrogen.The outlook provides suggestions for future research into cost-saving and sustainable integrated technologies for green hydrogen production towards achieving carbon neutrality and a circular bio-economy.展开更多
The QuEChERS extraction technique is a pretreatment technique that has been rapidly applied in recent years and is widely used in the field of pesticide residues with many advantages. This technique is based on solid ...The QuEChERS extraction technique is a pretreatment technique that has been rapidly applied in recent years and is widely used in the field of pesticide residues with many advantages. This technique is based on solid phase extraction (SPE), which uses the interaction between adsorbent and impurities in the matrix to achieve the purpose of purification. The method has easier operation and better purification effect than SPE. In this paper, the research progress of the QuEChERS technique in pesticide residue detection in different fields in recent years and its future development were reviewed, hoping to provide reference for further development and utilization of the QuEChERS technique in pesticide residue detection in the future.展开更多
Chinese chive is a kind of medicinal and edible plant,with many diseases,and chemical fungicides are usually used for control.In order to find out the risk of pesticide residues in Chinese chives,this paper summarized...Chinese chive is a kind of medicinal and edible plant,with many diseases,and chemical fungicides are usually used for control.In order to find out the risk of pesticide residues in Chinese chives,this paper summarized relevant literatures published in recent years,and sorted out and analyzed the types of pesticides used and detection techniques of common diseases in Chinese chives.展开更多
[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by ga...[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by gas chromatography-mass spectrometry(GC-MS)in selective ion scanning mode(SIM).[Results]The organophosphorus pesticide standard solutions showed good linearity in the mass concentration range of 0.1-10.0μg/ml with correlation coefficients(r)not lower than 0.999,and the detection limits(S=3 N)ranged from 0.01 to 0.05 mg/kg.The average recovery values were in the range of 80.2%-99.7%,with relative standard deviations(RSDs,n=3)in the range of 1.8%-6.3%,at the addition levels of 0.5,1.0 and 2.0 mg/kg.[Conclusions]The method is simple,sensitive and accurate,and can be used for the determination of organophosphorus pesticide residues in mutton.展开更多
In this study,our goal is to identify the land surface that has been polluted/degraded by petroleum products or other identified causes through laboratory analysis,to assess the depth of current contamination and to i...In this study,our goal is to identify the land surface that has been polluted/degraded by petroleum products or other identified causes through laboratory analysis,to assess the depth of current contamination and to identify the specific causes of contamination.The level of contamination will be assessed by analyzing a total of 90 soil samples,both within the first 30 cm depth and within the 30-60 cm interval.The potential impact of the petroleum activities and their effects on the environment and agricultural development in the area will be evaluated by studying the distribution of the chemical elements analyzed,particularly total petroleum hydrocarbons(TPH).In addition,a thematic map was created using MapSys 10.0 software based on their distribution,indicating the polluted areas using color codes and values.This analysis and mapping revealed that 7,473 square meters of the site were severely contaminated at 30 cm,representing approximately 25% of the site.展开更多
Global crises, notably climate shocks, degraded ecosystems, and growing energy demand, enforce sustainable production and consumption pathways. A circular bioeconomy offers the opportunities to actualize resource and ...Global crises, notably climate shocks, degraded ecosystems, and growing energy demand, enforce sustainable production and consumption pathways. A circular bioeconomy offers the opportunities to actualize resource and eco-efficiency enhancement, valorization of waste streams, reduction of fossil energy and greenhouse gas (GHG) emissions. Albeit biomass resources are a potential feedstock for bio-hydrogen (bio-H2) production, Ghana’s agricultural residues are not fully utilized. This paper examines the economic and environmental impact of bio-H2 electricity generation using agricultural residues in Ghana. The bio-H2 potential was determined based on biogas steam reforming (BSR). The research highlights that BSR could generate 2617 kt of bio-H2, corresponding to 2.78% of the global hydrogen demand. Yam and maize residues contribute 50.47% of the bio-H2 produced, while millet residues have the most negligible share. A tonne of residues could produce 16.59 kg of bio-H2 and 29.83 kWh of electricity. A total of 4,705.89 GWh of electricity produced could replace the consumption of 21.92% of Ghana’s electricity. The economic viability reveals that electricity cost is $0.174/kWh and has a positive net present value of $2135550609.45 with a benefit-to-cost ratio of 1.26. The fossil diesel displaced is 1421.09 ML, and 3862.55 kt CO2eq of carbon emissions decreased corresponding to an annual reduction potential of 386.26 kt CO2eq. This accounts for reducing 10.26% of Ghana’s GHG emissions. The study demonstrates that hydrogen-based electricity production as an energy transition is a strategic innovation pillar to advance the circular bioeconomy and achieve sustainable development goals.展开更多
Lotus(Nelumbo nucifera),an ancient aquatic plant,possesses a unique pharmacological activity that is primarily contributed by benzylisoquinoline alkaloids(BIAs).However,only few genes and enzymes involved in BIA biosy...Lotus(Nelumbo nucifera),an ancient aquatic plant,possesses a unique pharmacological activity that is primarily contributed by benzylisoquinoline alkaloids(BIAs).However,only few genes and enzymes involved in BIA biosynthesis in N.nucifera have been isolated and characterized.In the present study we identified the regiopromiscuity of an O-methyltransferase,designated NnOMT6,isolated from N.nucifera;NnOMT6 was found to catalyze the methylation of monobenzylisoquinoline 6-O/7-O,aporphine skeleton 6-O,phenylpropanoid 3-O,and protoberberine 2-O.We further probed the key residues affecting NnOMT6 activity via molecular docking and molecular dynamics simulation.Verification using site-directed mutagenesis revealed that residues D316,N130,L135,N176A,D269,and E328 were critical for BIA O-methyltransferase activities;furthermore,N323A,a mutant of NnOMT6,demonstrated a substantial increase in catalytic efficiency for BIAs and a broader acceptor scope compared with wild-type NnOMT6.To the best of our knowledge,this is the first study to report the O-methyltransferase activity of an aporphine skeleton without benzyl moiety substitutions in N.nucifera.The study findings provide biocatalysts for the semisynthesis of related medical compounds and give insights into protein engineering to strengthen O-methyltransferase activity in plants.展开更多
A new method for screening and identification 420 pesticide residues in fruits and vegetables by ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry(UPLC-Q-TOF/MS)were deve...A new method for screening and identification 420 pesticide residues in fruits and vegetables by ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry(UPLC-Q-TOF/MS)were developed.The samples were extracted with acetonitrile/acetic acid(99:1,V/V),and clean-up by SinChERS-Nano(single-step,cheap,effective,rugged,safe,nano)column,determined by UPLC-Q-TOF/MS.The accurate mass database and MS/MS database which contains 420 pesticides were established,the automatic retrieval of detection results was carried on according to the accurate mass,retention time,isotope ratio,ion fragment information,and so on.Method verification was performed on leeks samples.The results showed that 420 pesticides had good linearity in the range of 0.1-100μg/L,and the correlation coeffificients(R2)was greater than 0.990.The limits of detections(LODs)and limits of quantifications(LOQs)of 420 pesticides were in range of 0.05-2.0 and 0.1-5.0μg/L,respectively.The average spike recoveries at 3 levels were 70.1%to 119.7%,and the relative standard deviations(RSD)were lower than 20%(n=6).With this method,a survey of pesticide residues was conducted for 110 samples of 10 different fruits and vegetables,which provided scientific data for ensuring pesticide residue safety of the fruits and vegetables consumed daily by the public.This method was simple,sensitive and accurate,and could be used for rapid screening of 420 pesticide residues in fruits and vegetables.展开更多
The tea plant(Camellia sinensis)is rich in polyphenolic compounds.Particularly,flavan-3-ols and proanthocyanidins(PAs)are essential for the flavor and disease-resistance property of tea leaves.The fifth subgroup of R2...The tea plant(Camellia sinensis)is rich in polyphenolic compounds.Particularly,flavan-3-ols and proanthocyanidins(PAs)are essential for the flavor and disease-resistance property of tea leaves.The fifth subgroup of R2R3-MYB transcription factors comprises the primary activators of PA biosynthesis.This study showed that subgroup 5 R2R3-MYBs in tea plants contained at least nine genes belonging to the TT2,MYB5,and MYBPA types.Tannin-rich plants showed an expansion in the number of subgroup 5 R2R3-MYB genes compared with other dicotyledonous and monocot plants.The MYBPA-type genes of tea plant were slightly expanded.qRT–PCR analysis and GUS staining analysis of promoter activity under a series of treatments revealed the differential responses of CsMYB5s to biotic and abiotic stresses.In particular,CsMYB5a,CsMYB5b,and CsMYB5e responded to high-intensity light,high temperature,MeJA,and mechanical wounding,whereas CsMYB5f and CsMYB5g were only induced by wounding.Three genetic transformation systems(C.sinensis,Nicotiana tabacum,and Arabidopsis thaliana)were used to verify the biological function of CsMYB5s.The results show that CsMYB5a,CsMYB5b,and CsMYB5e could promote the gene expression of CsLAR and CsANR.However,CsMYB5f and CsMYB5g could only upregulate the gene expression of CsLAR but not CsANR.A series of site-directed mutation and domain-swapping experiments were used to verify functional domains and key amino acids of CsMYB5s responsible for the regulation of PA biosynthesis.This study aimed to provide insight into the induced expression and functional diversity model of PA biosynthesis regulation in tea plants.展开更多
Under the background of a transformation of the global energy structure,coal gasification technology has a wide application prospect,but its by-product,the coal gasification residue(CGR),is still not being efficiently...Under the background of a transformation of the global energy structure,coal gasification technology has a wide application prospect,but its by-product,the coal gasification residue(CGR),is still not being efficiently utilized for recycling.The CGR contains abundant carbon components,which could be applied to the microwave absorption field as the carbon matrix.In this study,Fe/CGR composites are fabricated via a two-step method,including the impregnation of Fe^(3+)and the reduction process.The influence of the different loading capacities of the Fe component on the morphology and electromagnetic properties is studied.Moreover,the loading content of Fe and the surface morphology of the Fe/CGR can be reasonably controlled by adjusting the concentration of the ferric nitrate solution.Meanwhile,Fe particles are evenly inserted on the CGR framework,which expands the Fe/CGR interfaces to enhance interfacial polarization,thus further improving the microwave-absorbing(MA)properties of composites.Particularly,as the Fe^(3+)concentration is 1.0 mol/L,the Fe/CGR composite exhibits outstanding performance.The reflection loss reaches-39.3 dB at 2.5 mm,and the absorption bandwidth covers 4.1 GHz at 1.5 mm.In this study,facile processability,resource recycling,appropriately matched impedance,and excellent MA performance are achieved.Finally,the Fe/CGR composites not only enhance the recycling of the CGR but also pioneer a new path for the synthesis of excellent absorbents.展开更多
[Objectives]This study was conducted to establish a rapid and effective method for simultaneous extraction of 54 kinds of veterinary drug residues in animal-derived food, including sulfonamides, quinolones, tetracycli...[Objectives]This study was conducted to establish a rapid and effective method for simultaneous extraction of 54 kinds of veterinary drug residues in animal-derived food, including sulfonamides, quinolones, tetracyclines, malachite greens, penicillins, nitroimidazoles, tranquilizers and macrolides, by HPLC-MS. [Methods] The samples were extracted with 80% acetonitrile water(containing 0.1% formic acid), combined with QuEChERS extraction technology and C18 and PSA purification, analyzed by high performance liquid chromatography-mass spectrometry, and quantified by external standard method. The target substances were analyzed on ZORBAX Eclipse C18 chromatographic column using 0.2% formic acid water and 0.2% methanol as mobile phases. The gradient elution mode was used for chromatographic separation and multiple reaction detection. [Results] In the linear range of 0.5-50.0 ng/ml, the linear relationship of the 54 kinds of veterinary drug residues was good, with correlation coefficients(r~2) greater than 0.995, and the detection limits ranged from 0.30 to 1.00 μg/kg. The results showed that the recovery ranged from 75.4% to 118.2% when different matrixes were added for recovery. [Conclusions] This method is simple, efficient, accurate, stable, and highly operable. It is applicable to simultaneous batch screening of veterinary drug residues in animal-derived food, and has high practical application value.展开更多
[Objectives]This study was conducted to understand the status of pesticide residues and dietary intake risk of Chinese chives in Tangshan area. [Methods] Sixty eight kinds of pesticide residues in 415 Chinese chive sa...[Objectives]This study was conducted to understand the status of pesticide residues and dietary intake risk of Chinese chives in Tangshan area. [Methods] Sixty eight kinds of pesticide residues in 415 Chinese chive samples collected from Tangshan area were qualitatively and quantitatively determined by high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS) and gas chromatography(GC) in 2020. [Results] The results showed that 41 kinds of pesticide residues were detected in the 415 Chinese chive samples, and the detection rate was 69.4%(288/415), and there was a combination of pesticides in many samples. According to the National Food Safety Standard―Maximum Residue Limits of Pesticides in Food(GB 2763-2019), the residues of 12 pesticides exceeded the maximum residue limits(MRLs), and the unqualified rate was 38.07%(158/415). The highest detection rate of clothianidin was 41.20%(171/415), but there was no MRL in GB 2763-2019. The next was procymidone, the detection rate of which was 35.42%(147/415), and the over-standard rate was 30.12%(125/415). Forbidden and restricted pesticides were detected in some samples. According to the dietary exposure risk assessment, the NEDI/ADI values were all less than 1 and the intake risk was within acceptable range. In Tangshan area, the types of pesticides used in Chinese chive production are complex, and there are risks of multi-residue pollution and use of banned and restricted pesticides and unregistered pesticides. It is suggested that routine monitoring of pesticide residues and management of pesticide use should be strengthened to ensure the quality and safety of agricultural products. [Conclusions] This study provides a theoretical basis for the safe production of Chinese chive and the standardized and rational use of pesticides.展开更多
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a...Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.展开更多
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i...Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis.展开更多
Prohibited pesticide residues have become one of the main factors affecting the quality and safety of Lycii Fructus,However,rarely studies focus on the rapid determination of these residues.Here,a total of 30 kinds of...Prohibited pesticide residues have become one of the main factors affecting the quality and safety of Lycii Fructus,However,rarely studies focus on the rapid determination of these residues.Here,a total of 30 kinds of prohibited pesticide residues were determined by ultra-performance liquid chromatography tandem triple quadrupole mass spectrometry(UPLC-MS/MS)in five different process ways.Pretreatment methods,chromatographic separation and detection conditions in mass spectrometry were all optimized accordingly.Among the five different pretreatment methods,the first and third solid phase extraction failed to provide high recoveries of sulfosulfuron compounds(both lower than 60%).Recovery of chlorphenamidine by the Quick Easy Cheap Effective Rugged and Safe multiresidue method(QuEChERS)was lower than 60%,which did not meet the requirements of trace determination.The concentrations of 30 prohibited pesticides residues treated by straightforward and solid phase extraction showed good linearity in their corresponding ranges,with correlation coefficients over 0.99.The average recoveries of straightforward ranged from 78.13%to 110.9%,while RSD ranged from 1.3%to 16.9%,albeit poor purification was observed.The recovery yield from solid phase extraction was between 67.75%and 103.08%with RSD value from 0.8%to 14.0%,which met the requirements of trace determination,this method has good precision and stability.These results could be employed to other Traditional Chinese Medicines(TCMs)in detecting prohibited pesticide residues.展开更多
基金The National Natural Science Foundation of China(22276153,51974262)funded this work。
文摘To address the hazardous by-product of zinc smelting and resource utilization of jarosite residue,this study applies an electric field-assisted hot acid treatment to completely recycle iron(Fe).This innovative approach aims to enhance the leaching efficiency of Fe from jarosite residue.The introduction of an electric field changes the charge distribution on the surface of the particles to enhance ions and electrons exchange and promotes the collision between particles to strengthen reaction kinetics.Based on the above,the leaching efficiency of Fe in jarosite under sulfuric acid attack has improved observably.The result shows that Fe leaching efficiency reaches 98.83%,which is increased by 28%under the optimal experimental conditions:current density of 30 mA·cm^(-2),H_(2)SO_(4) concentration of 1.5 mol·L^(-1),solid-liquid ratio of 70 g·L^(-1),temperature of 80℃ and time of 12 h.Leaching kinetics calculations show that the apparent activation energy is 16.97 kJ·mol^(-1) and the leaching of jarosite residue is controlled by a mixture of chemical reaction and diffusion,as well as the temperature and concentration of the leaching solution have an influence on leaching.This work provides a feasible idea for the efficient leaching of Fe from jarosite residue.
基金financially supported by the National Natural Science Foundation of China(No.52274348)the Major projects for the“Revealed Top”Science and Technology of Liaoning Province,China(No.2022JH1/10400024)the National Key Research and Development Program of China(No.2018YFC1902002).
文摘The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction of cyanide with pyrite and the decyanation of pyrite cyanide residue were analyzed.Results revealed that high pH value,high cyanide concentration,and high pyrite dosage promoted the interaction of cyanide with pyrite.The cyanidation of pyrite was pseudo-second-order with respect to cyanide.The decyanation of pyrite cyanide residue by Na_(2)SO_(3)/air oxidation was performed.The cyanide removal efficiency was 83.9% after 1 h of reaction time under the optimal conditions of pH value of 11.2,SO_(3)^(2-) dosage of 22 mg·g^(-1),and air flow rate of 1.46 L·min^(-1).X-ray photoelectron spectroscopy analysis of the pyrite samples showed the formation of Fe(Ⅲ)and FeSO_(4) during the cyanidation process.The cyanide that adsorbed on the pyrite surface after cyanidation mainly existed in the forms of free cyanide(CN^(-))and ferrocyanide(Fe(CN)_(6)^(4-)),which were effectively removed by Na_(2)SO_(3)/air oxidation.During the decyanation process,air intake promoted pyrite oxidation and weakened cyanide adsorption on the pyrite surface.This study has practical significance for gold enterprises aiming to mitigate the environmental impact related to cyanide residues.
基金financially supported by the National Natural Science Foundation of China (22075308, 22209197)Natural Science Foundation of Shanxi Province (20210302 1224439, 202203021211002)Shanxi Province Science Foundation for Youths (No: SQ2019001)。
文摘The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with traditional supercapacitors and lithium-ion batteries,respectively.However,the ion kinetics mismatch between cathode and anode leads to unsatisfied cycling lifetime and anode degradation.Tremendous efforts have been devoted to solving the abovementioned issue.One promising strategy is altering high conductive hard carbon anode with excellent structural stability to match with activated carbon cathode,assembling dual-carbon LIC.In this contribution,one-pot in-situ expansion and heteroatom doping strategy was adopted to prepare sheet-like hard carbon,while activated carbon was obtained involving activation.Ammonium persulfate was used as expanding and doping agent simultaneously.While furfural residues (FR) were served as carbon precursor.The resulting hard carbon (FRNS-HC) and activated carbon (FRNS-AC)show excellent electrochemical performance as negative and positive electrodes in a lithium-ion battery (LIB).To be specific,374.2 m Ah g^(-1)and 123.1 m Ah g^(-1)can be achieved at 0.1 A g^(-1)and 5 A g^(-1)when FRNS-HC was tested as anode.When combined with a highly porous carbon cathode (S_(BET)=2961 m^(2)g^(-1)) synthesized from the same precursor,the LIC showed high specific energy of147.67 Wh kg^(-1)at approximately 199.93 W kg^(-1),and outstanding cycling life with negligible capacitance fading over 1000 cycles.This study could lead the way for the development of heteroatom-doped porous carbon nanomaterials applied to Li-based energy storage applications.
文摘With a view to improving rabbit production performance, a trial on the chemical composition of pineapple press residue (Ananas comosus) and the effect of its incorporation in the ration on rabbit growth performance (Oryctolagus cuniculus) was carried out at the KUATE Cunicole Farm in Bandjoun, in Western Cameroon. To do this, 36 rabbits of the local breed, aged 53 days with an average weight of 1337 ± 119 g were distributed and randomly assigned to 3 experimental rations corresponding respectively to treatments or batches T0, T1 and T2. The animals in treatment T0 received a ration containing no pineapple press residue, while those in treatments T1 and T2 received a ration containing 20% and 40% pineapple press residue, respectively. These residues were dried and ground for chemical composition analysis. The feed served as well as refusals from the previous day were weighed each morning to assess feed intake. The animals were weighed every 7 days to assess weight performance. At the end of the trial which lasted 7 weeks, the animals were fasted for 24 hours, then sacrificed to evaluate carcass characteristics and the relative weights of some digestive organs. The results of this study showed that pineapple press residues had a high crude fiber content (19.2%) and energy (2500 Kcal/kg DM). Their incorporation had no significant effect on feed intake and feed conversion ratio. The average live weight, weight gain and average daily weight gain of the animals receiving the ration with 20% inclusion of pineapple press residue were comparable to those of the control group and significantly higher than those of animals fed with 40% inclusion of pineapple residue. The highest carcass yields were obtained with rabbits fed 20% pineapple press residue in their ration. The cost of feed for the production of a kilogram live weight of rabbit tends to decrease with the ration incorporated with 20% pineapple press residue. Pineapple press residues constitute a by-product that can be recycled and their incorporation at 20% can increase rabbit growth performance and reduce production costs.
文摘Soybean production systems that return plant residues to the soil surface are gaining in popularity. As these practices become more widespread, more crop and weed residues are being introduced into the upper soil profile. Greenhouse studies were conducted to determine the effects of varying concentrations of Palmer amaranth and pitted morningglory plant residues (aboveground portion of the plant) on soybean production. The study was arranged in a completely randomized experimental design with five treatments and five replications. Palmer amaranth and pitted morningglory residues were incorporated into soil at 20,000, 40,000, 80,000 and 160,000 ppm. Inert plastic residue at the same residue levels was included as a check. Soybean dry weight, leaf area and leaf tissue nutrient content were recorded during the study. A decrease in soybean dry weight and leaf area was observed as Palmer amaranth residue in the soil increased. Palmer amaranth residues of 160,000 ppm and 80,000 ppm in the soil significantly reduced soybean dry weight by 69% and 59%, respectively, and soybean leaf area by 60% and 57%, respectively. In contrast, pitted morningglory and inert plastic residues had no observable effect on soybean growth and development. This study demonstrated Palmer amaranth residues in the soil impacted early season soybean growth and development.
文摘The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydrogen is one of the sustainable management strategies for ubiquitous crop residues.Production of green hydrogen from crop residue sources will contribute to deepening access to clean and affordable energy,mitigating climate change,and ensuring environmental sustainability.However,the deployment of conventional thermochemical technologies for the conversion of crop residues to green hydrogen is costly,requires long residence time,produces low-quality products,and therefore needs to be upgraded.The current review examines the conventional,advanced,and integrated thermochemical conversion technologies for crop residues for green hydrogen production.After a brief overview of the conventional thermochemical techniques,the review delves into the broad narration of advanced thermochemical technologies including catalytic pyrolysis,microwave pyrolysis,co-pyrolysis,hyropyrolysis,and autothermal pyrolysis.The study advocates the deployment of integrated pyrolysis,anaerobic digestion,pyrolysis,and gasification technologies will ensure scalability,decomposition of recalcitrant feedstocks,and generation of high grade green hydrogen.The outlook provides suggestions for future research into cost-saving and sustainable integrated technologies for green hydrogen production towards achieving carbon neutrality and a circular bio-economy.
基金Supported by The Fourth Batch of High-end Talent Project in Hebei ProvinceSpecial Project of the Central Government in Guidance of Local Science and Technology Development(226Z5504G)Tangshan Talent Project(A202202005)。
文摘The QuEChERS extraction technique is a pretreatment technique that has been rapidly applied in recent years and is widely used in the field of pesticide residues with many advantages. This technique is based on solid phase extraction (SPE), which uses the interaction between adsorbent and impurities in the matrix to achieve the purpose of purification. The method has easier operation and better purification effect than SPE. In this paper, the research progress of the QuEChERS technique in pesticide residue detection in different fields in recent years and its future development were reviewed, hoping to provide reference for further development and utilization of the QuEChERS technique in pesticide residue detection in the future.
基金Supported by Special Project of the Central Government in Guidance of Local Science and Technology Development (Scientific and Technological Innovation Base Project) (226Z5504G)The Fourth Batch of High-end Talent Project in Hebei Province.
文摘Chinese chive is a kind of medicinal and edible plant,with many diseases,and chemical fungicides are usually used for control.In order to find out the risk of pesticide residues in Chinese chives,this paper summarized relevant literatures published in recent years,and sorted out and analyzed the types of pesticides used and detection techniques of common diseases in Chinese chives.
基金Supported by The Fourth Batch of High-end Talent Project in Hebei Province.
文摘[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by gas chromatography-mass spectrometry(GC-MS)in selective ion scanning mode(SIM).[Results]The organophosphorus pesticide standard solutions showed good linearity in the mass concentration range of 0.1-10.0μg/ml with correlation coefficients(r)not lower than 0.999,and the detection limits(S=3 N)ranged from 0.01 to 0.05 mg/kg.The average recovery values were in the range of 80.2%-99.7%,with relative standard deviations(RSDs,n=3)in the range of 1.8%-6.3%,at the addition levels of 0.5,1.0 and 2.0 mg/kg.[Conclusions]The method is simple,sensitive and accurate,and can be used for the determination of organophosphorus pesticide residues in mutton.
文摘In this study,our goal is to identify the land surface that has been polluted/degraded by petroleum products or other identified causes through laboratory analysis,to assess the depth of current contamination and to identify the specific causes of contamination.The level of contamination will be assessed by analyzing a total of 90 soil samples,both within the first 30 cm depth and within the 30-60 cm interval.The potential impact of the petroleum activities and their effects on the environment and agricultural development in the area will be evaluated by studying the distribution of the chemical elements analyzed,particularly total petroleum hydrocarbons(TPH).In addition,a thematic map was created using MapSys 10.0 software based on their distribution,indicating the polluted areas using color codes and values.This analysis and mapping revealed that 7,473 square meters of the site were severely contaminated at 30 cm,representing approximately 25% of the site.
文摘Global crises, notably climate shocks, degraded ecosystems, and growing energy demand, enforce sustainable production and consumption pathways. A circular bioeconomy offers the opportunities to actualize resource and eco-efficiency enhancement, valorization of waste streams, reduction of fossil energy and greenhouse gas (GHG) emissions. Albeit biomass resources are a potential feedstock for bio-hydrogen (bio-H2) production, Ghana’s agricultural residues are not fully utilized. This paper examines the economic and environmental impact of bio-H2 electricity generation using agricultural residues in Ghana. The bio-H2 potential was determined based on biogas steam reforming (BSR). The research highlights that BSR could generate 2617 kt of bio-H2, corresponding to 2.78% of the global hydrogen demand. Yam and maize residues contribute 50.47% of the bio-H2 produced, while millet residues have the most negligible share. A tonne of residues could produce 16.59 kg of bio-H2 and 29.83 kWh of electricity. A total of 4,705.89 GWh of electricity produced could replace the consumption of 21.92% of Ghana’s electricity. The economic viability reveals that electricity cost is $0.174/kWh and has a positive net present value of $2135550609.45 with a benefit-to-cost ratio of 1.26. The fossil diesel displaced is 1421.09 ML, and 3862.55 kt CO2eq of carbon emissions decreased corresponding to an annual reduction potential of 386.26 kt CO2eq. This accounts for reducing 10.26% of Ghana’s GHG emissions. The study demonstrates that hydrogen-based electricity production as an energy transition is a strategic innovation pillar to advance the circular bioeconomy and achieve sustainable development goals.
基金supported by the National Natural Science Foundation of China(32170388)the Scientific and Technological Innovation project of China Academy of Chinese Medical Sciences(CACMS Innovation Fund CI2021A04108,CI2021A04515)the Fundamental Research Funds for the Central Public Welfare Research Institutes of China(ZZ13-YQ-057,ZXKT21006)。
文摘Lotus(Nelumbo nucifera),an ancient aquatic plant,possesses a unique pharmacological activity that is primarily contributed by benzylisoquinoline alkaloids(BIAs).However,only few genes and enzymes involved in BIA biosynthesis in N.nucifera have been isolated and characterized.In the present study we identified the regiopromiscuity of an O-methyltransferase,designated NnOMT6,isolated from N.nucifera;NnOMT6 was found to catalyze the methylation of monobenzylisoquinoline 6-O/7-O,aporphine skeleton 6-O,phenylpropanoid 3-O,and protoberberine 2-O.We further probed the key residues affecting NnOMT6 activity via molecular docking and molecular dynamics simulation.Verification using site-directed mutagenesis revealed that residues D316,N130,L135,N176A,D269,and E328 were critical for BIA O-methyltransferase activities;furthermore,N323A,a mutant of NnOMT6,demonstrated a substantial increase in catalytic efficiency for BIAs and a broader acceptor scope compared with wild-type NnOMT6.To the best of our knowledge,this is the first study to report the O-methyltransferase activity of an aporphine skeleton without benzyl moiety substitutions in N.nucifera.The study findings provide biocatalysts for the semisynthesis of related medical compounds and give insights into protein engineering to strengthen O-methyltransferase activity in plants.
基金supported by National Key Research and Development Program of China(2018YFC1603400)Special Technical Support Project of State Administration for Market Regulation(2019YJ009).
文摘A new method for screening and identification 420 pesticide residues in fruits and vegetables by ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry(UPLC-Q-TOF/MS)were developed.The samples were extracted with acetonitrile/acetic acid(99:1,V/V),and clean-up by SinChERS-Nano(single-step,cheap,effective,rugged,safe,nano)column,determined by UPLC-Q-TOF/MS.The accurate mass database and MS/MS database which contains 420 pesticides were established,the automatic retrieval of detection results was carried on according to the accurate mass,retention time,isotope ratio,ion fragment information,and so on.Method verification was performed on leeks samples.The results showed that 420 pesticides had good linearity in the range of 0.1-100μg/L,and the correlation coeffificients(R2)was greater than 0.990.The limits of detections(LODs)and limits of quantifications(LOQs)of 420 pesticides were in range of 0.05-2.0 and 0.1-5.0μg/L,respectively.The average spike recoveries at 3 levels were 70.1%to 119.7%,and the relative standard deviations(RSD)were lower than 20%(n=6).With this method,a survey of pesticide residues was conducted for 110 samples of 10 different fruits and vegetables,which provided scientific data for ensuring pesticide residue safety of the fruits and vegetables consumed daily by the public.This method was simple,sensitive and accurate,and could be used for rapid screening of 420 pesticide residues in fruits and vegetables.
基金Thisworkwas financially supported by the joint funds of National Natural Science Foundation of China(U21A20232)the Natural Science Foundation of China(32002088,31870676,32072621)the National Key Research and Development Program of China(2018YFD1000601).
文摘The tea plant(Camellia sinensis)is rich in polyphenolic compounds.Particularly,flavan-3-ols and proanthocyanidins(PAs)are essential for the flavor and disease-resistance property of tea leaves.The fifth subgroup of R2R3-MYB transcription factors comprises the primary activators of PA biosynthesis.This study showed that subgroup 5 R2R3-MYBs in tea plants contained at least nine genes belonging to the TT2,MYB5,and MYBPA types.Tannin-rich plants showed an expansion in the number of subgroup 5 R2R3-MYB genes compared with other dicotyledonous and monocot plants.The MYBPA-type genes of tea plant were slightly expanded.qRT–PCR analysis and GUS staining analysis of promoter activity under a series of treatments revealed the differential responses of CsMYB5s to biotic and abiotic stresses.In particular,CsMYB5a,CsMYB5b,and CsMYB5e responded to high-intensity light,high temperature,MeJA,and mechanical wounding,whereas CsMYB5f and CsMYB5g were only induced by wounding.Three genetic transformation systems(C.sinensis,Nicotiana tabacum,and Arabidopsis thaliana)were used to verify the biological function of CsMYB5s.The results show that CsMYB5a,CsMYB5b,and CsMYB5e could promote the gene expression of CsLAR and CsANR.However,CsMYB5f and CsMYB5g could only upregulate the gene expression of CsLAR but not CsANR.A series of site-directed mutation and domain-swapping experiments were used to verify functional domains and key amino acids of CsMYB5s responsible for the regulation of PA biosynthesis.This study aimed to provide insight into the induced expression and functional diversity model of PA biosynthesis regulation in tea plants.
基金supported by the National Nature Science Foundation of China(No.51802212)the National College Students’Innovation and Entrepreneurship Training Program(No.2021465)+2 种基金the Natural Science Foundation of Shanxi Province,China(No.201801D221119)the Open Foundation of China-Belarus Belt and Road Joint Laboratory on Electromagnetic Environment Effect(Nos.ZBKF2022030802 and ZBKF2022030702)the Graduate Education Innovation Programs of Taiyuan University of Science and Technology(No.XCX212003)。
文摘Under the background of a transformation of the global energy structure,coal gasification technology has a wide application prospect,but its by-product,the coal gasification residue(CGR),is still not being efficiently utilized for recycling.The CGR contains abundant carbon components,which could be applied to the microwave absorption field as the carbon matrix.In this study,Fe/CGR composites are fabricated via a two-step method,including the impregnation of Fe^(3+)and the reduction process.The influence of the different loading capacities of the Fe component on the morphology and electromagnetic properties is studied.Moreover,the loading content of Fe and the surface morphology of the Fe/CGR can be reasonably controlled by adjusting the concentration of the ferric nitrate solution.Meanwhile,Fe particles are evenly inserted on the CGR framework,which expands the Fe/CGR interfaces to enhance interfacial polarization,thus further improving the microwave-absorbing(MA)properties of composites.Particularly,as the Fe^(3+)concentration is 1.0 mol/L,the Fe/CGR composite exhibits outstanding performance.The reflection loss reaches-39.3 dB at 2.5 mm,and the absorption bandwidth covers 4.1 GHz at 1.5 mm.In this study,facile processability,resource recycling,appropriately matched impedance,and excellent MA performance are achieved.Finally,the Fe/CGR composites not only enhance the recycling of the CGR but also pioneer a new path for the synthesis of excellent absorbents.
文摘[Objectives]This study was conducted to establish a rapid and effective method for simultaneous extraction of 54 kinds of veterinary drug residues in animal-derived food, including sulfonamides, quinolones, tetracyclines, malachite greens, penicillins, nitroimidazoles, tranquilizers and macrolides, by HPLC-MS. [Methods] The samples were extracted with 80% acetonitrile water(containing 0.1% formic acid), combined with QuEChERS extraction technology and C18 and PSA purification, analyzed by high performance liquid chromatography-mass spectrometry, and quantified by external standard method. The target substances were analyzed on ZORBAX Eclipse C18 chromatographic column using 0.2% formic acid water and 0.2% methanol as mobile phases. The gradient elution mode was used for chromatographic separation and multiple reaction detection. [Results] In the linear range of 0.5-50.0 ng/ml, the linear relationship of the 54 kinds of veterinary drug residues was good, with correlation coefficients(r~2) greater than 0.995, and the detection limits ranged from 0.30 to 1.00 μg/kg. The results showed that the recovery ranged from 75.4% to 118.2% when different matrixes were added for recovery. [Conclusions] This method is simple, efficient, accurate, stable, and highly operable. It is applicable to simultaneous batch screening of veterinary drug residues in animal-derived food, and has high practical application value.
基金Supported by The Fourth Batch of High-end Talent Project in Hebei ProvinceTangshan Science and Technology Entrepreneurship and Innovation Leading Talent ProjectFund for the Central Government to Guide Local Scientific and Technological Development (226Z5504G)。
文摘[Objectives]This study was conducted to understand the status of pesticide residues and dietary intake risk of Chinese chives in Tangshan area. [Methods] Sixty eight kinds of pesticide residues in 415 Chinese chive samples collected from Tangshan area were qualitatively and quantitatively determined by high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS) and gas chromatography(GC) in 2020. [Results] The results showed that 41 kinds of pesticide residues were detected in the 415 Chinese chive samples, and the detection rate was 69.4%(288/415), and there was a combination of pesticides in many samples. According to the National Food Safety Standard―Maximum Residue Limits of Pesticides in Food(GB 2763-2019), the residues of 12 pesticides exceeded the maximum residue limits(MRLs), and the unqualified rate was 38.07%(158/415). The highest detection rate of clothianidin was 41.20%(171/415), but there was no MRL in GB 2763-2019. The next was procymidone, the detection rate of which was 35.42%(147/415), and the over-standard rate was 30.12%(125/415). Forbidden and restricted pesticides were detected in some samples. According to the dietary exposure risk assessment, the NEDI/ADI values were all less than 1 and the intake risk was within acceptable range. In Tangshan area, the types of pesticides used in Chinese chive production are complex, and there are risks of multi-residue pollution and use of banned and restricted pesticides and unregistered pesticides. It is suggested that routine monitoring of pesticide residues and management of pesticide use should be strengthened to ensure the quality and safety of agricultural products. [Conclusions] This study provides a theoretical basis for the safe production of Chinese chive and the standardized and rational use of pesticides.
基金the National Natural Science Foundation of China(No.52374279)the Natural Science Foundation of Shaanxi Province(No.2023-YBGY-055).
文摘Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.
文摘Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis.
文摘Prohibited pesticide residues have become one of the main factors affecting the quality and safety of Lycii Fructus,However,rarely studies focus on the rapid determination of these residues.Here,a total of 30 kinds of prohibited pesticide residues were determined by ultra-performance liquid chromatography tandem triple quadrupole mass spectrometry(UPLC-MS/MS)in five different process ways.Pretreatment methods,chromatographic separation and detection conditions in mass spectrometry were all optimized accordingly.Among the five different pretreatment methods,the first and third solid phase extraction failed to provide high recoveries of sulfosulfuron compounds(both lower than 60%).Recovery of chlorphenamidine by the Quick Easy Cheap Effective Rugged and Safe multiresidue method(QuEChERS)was lower than 60%,which did not meet the requirements of trace determination.The concentrations of 30 prohibited pesticides residues treated by straightforward and solid phase extraction showed good linearity in their corresponding ranges,with correlation coefficients over 0.99.The average recoveries of straightforward ranged from 78.13%to 110.9%,while RSD ranged from 1.3%to 16.9%,albeit poor purification was observed.The recovery yield from solid phase extraction was between 67.75%and 103.08%with RSD value from 0.8%to 14.0%,which met the requirements of trace determination,this method has good precision and stability.These results could be employed to other Traditional Chinese Medicines(TCMs)in detecting prohibited pesticide residues.