The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and res...The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and resolving overlapping projection issues in FPXS.The conventional analytical ray-tracing approach is limited by the number of patterns and is not applicable to FPXS-projection calculations.However,the computation time of Monte Carlo(MC)simulation is independent of the size of the patterned arrays in FPXS.This study proposes two high-efficiency MC projection simulators for FPXS:a graphics processing unit(GPU)-based phase-space sampling MC(gPSMC)simulator and GPU-based fluence sampling MC(gFSMC)simulator.The two simulators comprise three components:imaging-system modeling,photon initialization,and physical-interaction simulations in the phantom.Imaging-system modeling was performed by modeling the FPXS,imaging geometry,and detector.The gPSMC simulator samples the initial photons from the phase space,whereas the gFSMC simulator performs photon initialization from the calculated energy spectrum and fluence map.The entire process of photon interaction with the geometry and arrival at the detector was simulated in parallel using multiple GPU kernels,and projections based on the two simulators were calculated.The accuracies of the two simulators were evaluated by comparing them with the conventional analytical ray-tracing approach and acquired projections,and the efficiencies were evaluated by comparing the computation time.The results of simulated and realistic experiments illustrate the accuracy and efficiency of the proposed gPSMC and gFSMC simulators in the projection calculation of various phantoms.展开更多
To address data scarcity on long-term glacial discharge and inadequacies in simulating and predicting hydrological processes in the Tien Shan,this study analysed the observed discharge at multiple timescales over 1980...To address data scarcity on long-term glacial discharge and inadequacies in simulating and predicting hydrological processes in the Tien Shan,this study analysed the observed discharge at multiple timescales over 1980se2017 and projected changes within a representative glacierized high-mountain region:eastern Tien Shan,Central Asia.Hydrological processes were simulated to predict changes under four future scenarios(SSP1,SSP2,SSP3,and SSP5)using a classical hydrological model coupled with a glacier dynamics module.Discharge rates at annual,monthly(June,July,August)and daily timescales were obtained from two hydrological gauges:Urumqi Glacier No.1 hydrological station(UGH)and Zongkong station(ZK).Overall,annual and summer discharge increased significantly(p<0.05)at both stations over the study period.Their intra-annual variations mainly resulted from differences in their recharge mechanisms.The simulations show that a tipping point in annual discharge at UGH may occur between 2018 and 2024 under the four SSPs scenarios.Glacial discharge is predicted to cease earlier at ZK than at UGH.This relates to glacier type and size,suggesting basins with heavily developed small glaciers will reach peak discharge sooner,resulting in an earlier freshwater supply challenge.These findings serve as a reference for research into glacial runoff in Central Asia and provide a decision-making basis for planning local water-resource projects.展开更多
The climatological characteristics of precipitation (HRB) are analyzed using daily observations at 740 and the water vapor budget in the Haihe River basin stations in China in 1951 2007 and the 4-time daily ERA40 re...The climatological characteristics of precipitation (HRB) are analyzed using daily observations at 740 and the water vapor budget in the Haihe River basin stations in China in 1951 2007 and the 4-time daily ERA40 reanalysis data in 1958 2001. The results show that precipitation and surface air temperature present significant interannual and interdecadal variability, with cold and wet conditions before the 1970s but warm and dry conditions after the 1980s. Precipitation has reduced substantially since the 1990s, with a continued increase of surface air temperature. The total column water vapor has also reduced remarkably since the late 1970s. The multi-model ensemble from the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) has capably simulated the 20th century climate features and successfully reproduced the spatial patterns of precipitation and temperature. Unfortunately, the models do not reproduce the interdecadal changes. Based on these results, future projections of the climate in the HRB are discussed under the IPCC Special Report on Emissions Scenarios (SRES) B1, A1B, and A2. The results show that precipitation is expected to increase in the 21st century, with substantial interannual fluctuations relative to the models' baseline climatology. A weak increasing trend in precipitation is projected before the 2040s, followed by an abrupt increase after the 2040s, especially in winter. Precipitation is projected to increase by 10% 18% by the end of the 21st century. Due to the persistent warming of surface air temperature, water vapor content in the lower troposphere is projected to increase. Relative humidity will decrease in the mid-lower troposphere but increase in the upper troposphere. On the other hand, precipitation minus evaporation remains positive results, the HRB region is expected to get wetter throughout the 21st century. Based on these projection in the 21st century due to global warming.展开更多
Considering the importance of black carbon (BC), this study began by comparing the 20th century simulation of South Asian summer climate in IPCC CMIP3, based on the scenario of models with and without BC. Generally,...Considering the importance of black carbon (BC), this study began by comparing the 20th century simulation of South Asian summer climate in IPCC CMIP3, based on the scenario of models with and without BC. Generally, the multi-model mean of the models that include BC reproduced the observed climate relatively better than those that did not. Then, the 21st century South Asian summer precipitation was projected based on the IPCC CMIP3 projection simulations. The projected precipitation in the present approach exhibited a considerable difference from the multi- model ensemble mean (MME) of IPCC AR4 projection simulations, and also from the MME of the models that ig- nore the effect of BC. In particular, the present projection exhibited a dry anomaly over the central Indian Peninsula, sandwiched between wet conditions on the southern and northern sides of Pakistan and India, rather than homogen- eous wet conditions as seen in the MME of IPCC AR4. Thus, the spatial pattern of South Asian summer rainfall in the future may be more complicated than previously thought.展开更多
We discuss the concept of typicality of quantum states at quantum-critical points, using projector Monte Carlo simu- lations of an S ---- 1/2 bilayer Heisenberg antiferromagnet as an illustration. With the projection ...We discuss the concept of typicality of quantum states at quantum-critical points, using projector Monte Carlo simu- lations of an S ---- 1/2 bilayer Heisenberg antiferromagnet as an illustration. With the projection (imaginary) time t scaled as t= aLz, L being the system length and z the dynamic critical exponent (which takes the value z = 1 in the bilayer model studied here), a critical point can be identified which asymptotically flows to the correct location and universality class with increasing L, independently of the prefactor a and the initial state. Varying the proportionality factor a and the initial state only changes the cross-over behavior into the asymptotic large-L behavior. In some cases, choosing an optimal factor a may also lead to the vanishing of the leading finite-size corrections. The observation of typicality can be used to speed up simulations of quantum criticality, not only within the Monte Carlo approach but also with other numerical methods where imaginary-time evolution is employed, e.g., tensor network states, as it is not necessary to evolve fully to the ground state but only for sufficiently long times to reach the typicality regime.展开更多
A fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-...A fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command,but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simulators. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output(MISO) fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decomposition of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the controller theoretically can guarantee asymptotic tracking performance in the presence of the above uncertainties, which is very important for high-accuracy tracking control of flight motion simulators.Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties.展开更多
文摘The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and resolving overlapping projection issues in FPXS.The conventional analytical ray-tracing approach is limited by the number of patterns and is not applicable to FPXS-projection calculations.However,the computation time of Monte Carlo(MC)simulation is independent of the size of the patterned arrays in FPXS.This study proposes two high-efficiency MC projection simulators for FPXS:a graphics processing unit(GPU)-based phase-space sampling MC(gPSMC)simulator and GPU-based fluence sampling MC(gFSMC)simulator.The two simulators comprise three components:imaging-system modeling,photon initialization,and physical-interaction simulations in the phantom.Imaging-system modeling was performed by modeling the FPXS,imaging geometry,and detector.The gPSMC simulator samples the initial photons from the phase space,whereas the gFSMC simulator performs photon initialization from the calculated energy spectrum and fluence map.The entire process of photon interaction with the geometry and arrival at the detector was simulated in parallel using multiple GPU kernels,and projections based on the two simulators were calculated.The accuracies of the two simulators were evaluated by comparing them with the conventional analytical ray-tracing approach and acquired projections,and the efficiencies were evaluated by comparing the computation time.The results of simulated and realistic experiments illustrate the accuracy and efficiency of the proposed gPSMC and gFSMC simulators in the projection calculation of various phantoms.
基金the Third Xinjiang Scientific Expedition Program(2021xjkk0801)the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0201)the National Natural Science Foundation of China(42301168)。
文摘To address data scarcity on long-term glacial discharge and inadequacies in simulating and predicting hydrological processes in the Tien Shan,this study analysed the observed discharge at multiple timescales over 1980se2017 and projected changes within a representative glacierized high-mountain region:eastern Tien Shan,Central Asia.Hydrological processes were simulated to predict changes under four future scenarios(SSP1,SSP2,SSP3,and SSP5)using a classical hydrological model coupled with a glacier dynamics module.Discharge rates at annual,monthly(June,July,August)and daily timescales were obtained from two hydrological gauges:Urumqi Glacier No.1 hydrological station(UGH)and Zongkong station(ZK).Overall,annual and summer discharge increased significantly(p<0.05)at both stations over the study period.Their intra-annual variations mainly resulted from differences in their recharge mechanisms.The simulations show that a tipping point in annual discharge at UGH may occur between 2018 and 2024 under the four SSPs scenarios.Glacial discharge is predicted to cease earlier at ZK than at UGH.This relates to glacier type and size,suggesting basins with heavily developed small glaciers will reach peak discharge sooner,resulting in an earlier freshwater supply challenge.These findings serve as a reference for research into glacial runoff in Central Asia and provide a decision-making basis for planning local water-resource projects.
基金Supported by the National Science and Technology Support Program of China (2007BAC03A01)China Meteorological Ad- ministration Special Public Welfare Research Fund (GYHY200906020 and GYHY200806006)National Basic Research and Development (973) Program of China (2006CB403404)
文摘The climatological characteristics of precipitation (HRB) are analyzed using daily observations at 740 and the water vapor budget in the Haihe River basin stations in China in 1951 2007 and the 4-time daily ERA40 reanalysis data in 1958 2001. The results show that precipitation and surface air temperature present significant interannual and interdecadal variability, with cold and wet conditions before the 1970s but warm and dry conditions after the 1980s. Precipitation has reduced substantially since the 1990s, with a continued increase of surface air temperature. The total column water vapor has also reduced remarkably since the late 1970s. The multi-model ensemble from the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) has capably simulated the 20th century climate features and successfully reproduced the spatial patterns of precipitation and temperature. Unfortunately, the models do not reproduce the interdecadal changes. Based on these results, future projections of the climate in the HRB are discussed under the IPCC Special Report on Emissions Scenarios (SRES) B1, A1B, and A2. The results show that precipitation is expected to increase in the 21st century, with substantial interannual fluctuations relative to the models' baseline climatology. A weak increasing trend in precipitation is projected before the 2040s, followed by an abrupt increase after the 2040s, especially in winter. Precipitation is projected to increase by 10% 18% by the end of the 21st century. Due to the persistent warming of surface air temperature, water vapor content in the lower troposphere is projected to increase. Relative humidity will decrease in the mid-lower troposphere but increase in the upper troposphere. On the other hand, precipitation minus evaporation remains positive results, the HRB region is expected to get wetter throughout the 21st century. Based on these projection in the 21st century due to global warming.
基金Supported by the National(Key) Basic Research and Development(973) Program of China(2015CB453202 and 2016YFA0601802)National Natural Science Foundation of China(41421004,41528502,and 41375085)
文摘Considering the importance of black carbon (BC), this study began by comparing the 20th century simulation of South Asian summer climate in IPCC CMIP3, based on the scenario of models with and without BC. Generally, the multi-model mean of the models that include BC reproduced the observed climate relatively better than those that did not. Then, the 21st century South Asian summer precipitation was projected based on the IPCC CMIP3 projection simulations. The projected precipitation in the present approach exhibited a considerable difference from the multi- model ensemble mean (MME) of IPCC AR4 projection simulations, and also from the MME of the models that ig- nore the effect of BC. In particular, the present projection exhibited a dry anomaly over the central Indian Peninsula, sandwiched between wet conditions on the southern and northern sides of Pakistan and India, rather than homogen- eous wet conditions as seen in the MME of IPCC AR4. Thus, the spatial pattern of South Asian summer rainfall in the future may be more complicated than previously thought.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11734002 and 11775021)the National Science Foundation(Grant No.DMR-1710170)a Simons Investigator Award
文摘We discuss the concept of typicality of quantum states at quantum-critical points, using projector Monte Carlo simu- lations of an S ---- 1/2 bilayer Heisenberg antiferromagnet as an illustration. With the projection (imaginary) time t scaled as t= aLz, L being the system length and z the dynamic critical exponent (which takes the value z = 1 in the bilayer model studied here), a critical point can be identified which asymptotically flows to the correct location and universality class with increasing L, independently of the prefactor a and the initial state. Varying the proportionality factor a and the initial state only changes the cross-over behavior into the asymptotic large-L behavior. In some cases, choosing an optimal factor a may also lead to the vanishing of the leading finite-size corrections. The observation of typicality can be used to speed up simulations of quantum criticality, not only within the Monte Carlo approach but also with other numerical methods where imaginary-time evolution is employed, e.g., tensor network states, as it is not necessary to evolve fully to the ground state but only for sufficiently long times to reach the typicality regime.
基金supported by the National Basic Research Program of China(No.2014CB046406)the National Natural Science Foundation of China(No.51235002)
文摘A fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command,but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simulators. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output(MISO) fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decomposition of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the controller theoretically can guarantee asymptotic tracking performance in the presence of the above uncertainties, which is very important for high-accuracy tracking control of flight motion simulators.Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties.