期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Uncertainty of Climate Response to Natural and Anthropogenic Forcings Due to Different Land Use Scenarios 被引量:2
1
作者 Alexey V.ELISEEV Igor I.MOKHOV 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第5期1215-1232,共18页
The A.M.Obukhov Institute of Atmospheric Physics,Russian Academy of Sciences (IAP RAS) climate model (CM) of intermediate complexity is extended by a spatially explicit terrestrial carbon cycle module.Numerical ex... The A.M.Obukhov Institute of Atmospheric Physics,Russian Academy of Sciences (IAP RAS) climate model (CM) of intermediate complexity is extended by a spatially explicit terrestrial carbon cycle module.Numerical experiments with the IAP RAS CM are performed forced by the reconstructions of anthropogenic and natural forcings for the 16th to the 20th centuries and by combined SRES (Special Report on Emission Scenarios) A2-LUH (Land Use Harmonization) anthropogenic scenarios for the 21st century.Hereby,the impact of uncertainty in land-use scenarios on results of simulations with a coupled climate-carbon cycle model is tested.The simulations of the model realistically reproduced historical changes in carbon cycle characteristics.In the IAP RAS CM,climate warming reproduced in the 20th and 21st centuries enhanced terrestrial net primary production but terrestrial carbon uptake was suppressed due to an overcompensating increase in soil respiration.Around year 2100,the simulations the model forced by different land use scenarios diverged markedly,by about 70 Pg (C) in terms of biomass and soil carbon stock but they differed only by about 10 ppmv in terms of atmospheric carbon dioxide content. 展开更多
关键词 terrestrial carbon cycle climate model anthropogenic scenarios uncertainty in projections
下载PDF
Uncertainty in Projection of Climate Extremes:A Comparison of CMIP5 and CMIP6 被引量:5
2
作者 Shaobo ZHANG Jie CHEN 《Journal of Meteorological Research》 SCIE CSCD 2021年第4期646-662,共17页
Climate projections by global climate models(GCMs)are subject to considerable and multi-source uncertainties.This study aims to compare the uncertainty in projection of precipitation and temperature extremes between C... Climate projections by global climate models(GCMs)are subject to considerable and multi-source uncertainties.This study aims to compare the uncertainty in projection of precipitation and temperature extremes between Coupled Model Intercomparison Project(CMIP)phase 5(CMIP5)and phase 6(CMIP6),using 24 GCMs forced by 3 emission scenarios in each phase of CMIP.In this study,the total uncertainty(T)of climate projections is decomposed into the greenhouse gas emission scenario uncertainty(S,mean inter-scenario variance of the signals over all the models),GCM uncertainty(M,mean inter-model variance of signals over all emission scenarios),and internal climate variability uncertainty(V,variance in noises over all models,emission scenarios,and projection lead times);namely,T=S+M+V.The results of analysis demonstrate that the magnitudes of S,M,and T present similarly increasing trends over the 21 st century.The magnitudes of S,M,V,and T in CMIP6 are 0.94-0.96,1.38-2.07,1.04-1.69,and 1.20-1.93 times as high as those in CMIP5.Both CMIP5 and CMIP6 exhibit similar spatial variation patterns of uncertainties and similar ranks of contributions from different sources of uncertainties.The uncertainty for precipitation is lower in midlatitudes and parts of the equatorial region,but higher in low latitudes and the polar region.The uncertainty for temperature is higher over land areas than oceans,and higher in the Northern Hemisphere than the Southern Hemisphere.For precipitation,T is mainly determined by M and V in the early 21 st century,by M and S at the end of the 21 st century;and the turning point will appear in the 2070 s.For temperature,T is dominated by M in the early 21 st century,and by S at the end of the 21 st century,with the turning point occuring in the 2060 s.The relative contributions of S to T in CMIP6(12.5%-14.3%for precipitation and 31.6%-36.2%for temperature)are lower than those in CMIP5(15.1%-17.5%for precipitation and 38.6%-43.8%for temperature).By contrast,the relative contributions of M in CMIP6(50.6%-59.8%for precipitation and 59.4%-60.3%for temperature)are higher than those in CMIP5(47.5%-57.9%for precipitation and 51.7%-53.6%for temperature).The higher magnitude and relative contributions of M in CMIP6 indicate larger difference among projections of various GCMs.Therefore,more GCMs are needed to ensure the robustness of climate projections. 展开更多
关键词 climate projection uncertainty uncertainty contribution Coupled Model Intercomparison Project(CMIP)phase 5(CMIP5)and phase 6(CMIP6) extreme precipitation and temperature
原文传递
Intercomparison of multi-model ensemble-processing strategies within a consistent framework for climate projection in China
3
作者 Huanhuan ZHU Zhihong JIANG +5 位作者 Laurent LI Wei LI Sheng JIANG Panyu ZHOU Weihao ZHAO Tong LI 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第9期2125-2141,共17页
Climate change adaptation and relevant policy-making need reliable projections of future climate.Methods based on multi-model ensemble are generally considered as the most efficient way to achieve the goal.However,the... Climate change adaptation and relevant policy-making need reliable projections of future climate.Methods based on multi-model ensemble are generally considered as the most efficient way to achieve the goal.However,their efficiency varies and inter-comparison is a challenging task,as they use a variety of target variables,geographic regions,time periods,or model pools.Here,we construct and use a consistent framework to evaluate the performance of five ensemble-processing methods,i.e.,multimodel ensemble mean(MME),rank-based weighting(RANK),reliability ensemble averaging(REA),climate model weighting by independence and performance(ClimWIP),and Bayesian model averaging(BMA).We investigate the annual mean temperature(Tav)and total precipitation(Prcptot)changes(relative to 1995–2014)over China and its seven subregions at 1.5 and 2℃warming levels(relative to pre-industrial).All ensemble-processing methods perform better than MME,and achieve generally consistent results in terms of median values.But they show different results in terms of inter-model spread,served as a measure of uncertainty,and signal-to-noise ratio(SNR).ClimWIP is the most optimal method with its good performance in simulating current climate and in providing credible future projections.The uncertainty,measured by the range of 10th–90th percentiles,is reduced by about 30%for Tav,and 15%for Prcptot in China,with a certain variation among subregions.Based on ClimWIP,and averaged over whole China under 1.5/2℃global warming levels,Tav increases by about 1.1/1.8℃(relative to 1995–2014),while Prcptot increases by about 5.4%/11.2%,respectively.Reliability of projections is found dependent on investigated regions and indices.The projection for Tav is credible across all regions,as its SNR is generally larger than 2,while the SNR is lower than 1 for Prcptot over most regions under 1.5℃warming.The largest warming is found in northeastern China,with increase of 1.3(0.6–1.7)/2.0(1.4–2.6)℃(ensemble’s median and range of the 10th–90th percentiles)under 1.5/2℃warming,followed by northern and northwestern China.The smallest but the most robust warming is in southwestern China,with values exceeding 0.9(0.6–1.1)/1.5(1.1–1.7)℃.The most robust projection and largest increase is achieved in northwestern China for Prcptot,with increase of 9.1%(–1.6–24.7%)/17.9%(0.5–36.4%)under 1.5/2℃warming.Followed by northern China,where the increase is 6.0%(–2.6–17.8%)/11.8%(2.4–25.1%),respectively.The precipitation projection is of large uncertainty in southwestern China,even with uncertain sign of variation.For the additional half-degree warming,Tav increases more than 0.5℃throughout China.Almost all regions witness an increase of Prcptot,with the largest increase in northwestern China. 展开更多
关键词 Multi-model ensemble simulation Ensemble-processing strategy Global warming targets Climate projection uncertainty assessment Regional climate change in China
原文传递
Future Changes and Uncertainties in Temperature and Precipitation over China Based on CMIP5 Models 被引量:22
4
作者 TIAN Di GUO Yan DONG Wenjie 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第4期487-496,共10页
Climate changes in future 21 st century China and their uncertainties are evaluated based on 22 climate models from the Coupled Model Intercomparison Project Phase 5(CMIP5). By 2081–2100, the annual mean surface ai... Climate changes in future 21 st century China and their uncertainties are evaluated based on 22 climate models from the Coupled Model Intercomparison Project Phase 5(CMIP5). By 2081–2100, the annual mean surface air temperature(SAT) is predicted to increase by 1.3℃± 0.7℃, 2.6℃± 0.8℃ and 5.2℃± 1.2℃ under the Representative Concentration Pathway(RCP) scenarios RCP2.6, RCP4.5 and RCP8.5, relative to 1986–2005, respectively. The future change in SAT averaged over China increases the most in autumn/winter and the least in spring, while the uncertainty shows little seasonal variation.Spatially, the annual and seasonal mean SAT both show a homogeneous warming pattern across China, with a warming rate increasing from southeastern China to the Tibetan Plateau and northern China, invariant with time and emissions scenario.The associated uncertainty in SAT decreases from northern to southern China. Meanwhile, by 2081–2100, the annual mean precipitation increases by 5% ± 5%, 8% ± 6% and 12% ± 8% under RCP2.6, RCP4.5 and RCP8.5, respectively. The national average precipitation anomaly percentage, largest in spring and smallest in winter, and its uncertainty, largest in winter and smallest in autumn, show visible seasonal variations. Although at a low confidence level, a homogeneous wetting pattern is projected across China on the annual mean scale, with a larger increasing percentage in northern China and a weak drying in southern China in the early 21 st century. The associated uncertainty is also generally larger in northern China and smaller in southwestern China. In addition, both SAT and precipitation usually show larger seasonal variability on the sub-regional scale compared with the national average. 展开更多
关键词 CMIP5 China surface air temperature precipitation projection uncertainty
下载PDF
Managing project risks and uncertainties
5
作者 Mike Mentis 《Forest Ecosystems》 SCIE CAS CSCD 2015年第1期31-44,共14页
This article considers threats to a project slipping on budget,schedule and fit-for-purpose.Threat is used here as the collective for risks(quantifiable bad things that can happen)and uncertainties(poorly or not qu... This article considers threats to a project slipping on budget,schedule and fit-for-purpose.Threat is used here as the collective for risks(quantifiable bad things that can happen)and uncertainties(poorly or not quantifiable bad possible events).Based on experience with projects in developing countries this review considers that(a)project slippage is due to uncertainties rather than risks,(b)while eventuation of some bad things is beyond control,managed execution and oversight are stil the primary means to keeping within budget,on time and fit-for-purpose,(c)improving project delivery is less about bigger and more complex and more about coordinated focus,effectiveness and developing thought-out heuristics,and(d)projects take longer and cost more partly because threat identification is inaccurate,the scope of identified threats is too narrow,and the threat assessment product is not integrated into overall project decision-making and execution.Almost by definition,what is poorly known is likely to cause problems.Yet it is not just the unquantifiability and intangibility of uncertainties causing project slippage,but that they are insufficiently taken into account in project planning and execution that cause budget and time overruns.Improving project performance requires purpose-driven and managed deployment of scarce seasoned professionals.This can be aided with independent oversight by deeply experienced panelists who contribute technical insights and can potentially show that diligence is seen to be done. 展开更多
关键词 Budget Fit-for-purpose Management Project Risks Schedule Threats Uncertainties
下载PDF
Geometric matrix research for nuclear waste drum tomographic gamma scanning transmission image reconstruction
6
作者 张金钊 庹先国 《Chinese Physics C》 SCIE CAS CSCD 2015年第6期116-120,共5页
A geometric matrix model of nuclear waste drums is proposed for transmission image reconstruction from tomographic gamma scans(TGS). The model assumes that rays are conical, with intensity uniformly distributed with... A geometric matrix model of nuclear waste drums is proposed for transmission image reconstruction from tomographic gamma scans(TGS). The model assumes that rays are conical, with intensity uniformly distributed within the cone. The attenuation coefficients are centered on the voxel(cube) of the geometric center. The proposed model is verified using the EM algorithm and compared to previously reported models. The calculated results show that the model can obtain good reconstruction results even when the sample models are highly heterogeneous. 展开更多
关键词 tomographic verified cube reconstructed attenuation uniformly heterogeneous gamma projection uncertainty
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部