The purpose of the present paper is twofold. First, the projective Riccati equations (PREs for short) are resolved by means of a linearized theorem, which was known in the literature. Based on the signs and values o...The purpose of the present paper is twofold. First, the projective Riccati equations (PREs for short) are resolved by means of a linearized theorem, which was known in the literature. Based on the signs and values of coeffcients of PREs, the solutions with two arbitrary parameters of PREs can be expressed by the hyperbolic functions, the trigonometric functions, and the rational functions respectively, at the same time the relation between the components of each solution to PREs is also implemented. Second, more new travelling wave solutions for some nonlinear PDEs, such as the Burgers equation, the mKdV equation, the NLS^+ equation, new Hamilton amplitude equation, and so on, are obtained by using Sub-ODE method, in which PREs are taken as the Sub-ODEs. The key idea of this method is that the travelling wave solutions of nonlinear PDE can be expressed by a polynomial in two variables, which are the components of each solution to PREs, provided that the homogeneous balance between the higher order derivatives and nonlinear terms in the equation is considered.展开更多
Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer alg...Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.展开更多
Using the projective Riccati equation expansion (PREE) method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitr...Using the projective Riccati equation expansion (PREE) method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitrary functions for two nonlinear physical models are obtained. Based on one of the variable separation solutions and by choosing appropriate functions, new types of interactions between the multi-valued and single-valued solitons, such as a peakon-like semi-foldon and a peakon, a compacton-like semi-foldon and a compacton, are investigated.展开更多
In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than pro...In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.展开更多
A transformation is introduced on the basis of the projective Riccati equations, and it is applied as an intermediate in expansion method to solve nonlinear Schrǒdinger (NLS) equation and coupled NLS equations. Manyk...A transformation is introduced on the basis of the projective Riccati equations, and it is applied as an intermediate in expansion method to solve nonlinear Schrǒdinger (NLS) equation and coupled NLS equations. Manykinds of envelope travelling wave solutions including envelope solitary wave solution are obtained, in which some arefound for the first time.展开更多
From the controlling equations of atmosphere motion, Prandtl's mixing length theory is used to derive the atmospheric turbulence models, such as Burgers equation model and Burgers-KdV equation model. And then the ...From the controlling equations of atmosphere motion, Prandtl's mixing length theory is used to derive the atmospheric turbulence models, such as Burgers equation model and Burgers-KdV equation model. And then the projective Riccati equations are applied to solve these atmospheric turbulence models, where much more patterns are obtained, including solitary wave pattern, singular pattern, and so on.展开更多
Based on computerized symbolic computation,a new method and its algorithm are proposed for searching for exact travelling wave solutions of the nonlinear partial differential equations.Making use of our approach,we in...Based on computerized symbolic computation,a new method and its algorithm are proposed for searching for exact travelling wave solutions of the nonlinear partial differential equations.Making use of our approach,we investigate the Whitham-Broer-Kaup equation in shallow water and obtain new families of exact solutions,which include soliton-like solutions and periodic solutions.As its special cases,the solutions of classical long wave equations and modified Boussinesq equations can also be found.展开更多
By using the generally projective Riccati equation method, more new exact travelling wave solutions to extended nonlinear Schrodinger equation (NLSE), which describes the femtosecond pulse propagation in monomode op...By using the generally projective Riccati equation method, more new exact travelling wave solutions to extended nonlinear Schrodinger equation (NLSE), which describes the femtosecond pulse propagation in monomode optical fiber, are found, which include bright soliton solution, dark soliton solution, new solitary waves, periodic solutions, and rational solutions. The finding of abundant solution structures for extended NLSE helps to study the movement rule of femtosecond pulse propagation in monomode optical fiber.展开更多
For a higher-dimensional integrable nonlinear dynamical system, there are abundant coherent soliton excitations. With the aid of an improved projective Riccati equation approach, the paper obtains several types of exa...For a higher-dimensional integrable nonlinear dynamical system, there are abundant coherent soliton excitations. With the aid of an improved projective Riccati equation approach, the paper obtains several types of exact solutions to the (2+l)-dimenslonal dispersive long-wave equation, including multiple-soliton solutions, periodic soliton solutions, and Weierstrass function solutions. From these solutions, apart from several multisoliton excitations, we derive some novel features of wave structures by introducing some types of lower-dimensional patterns.展开更多
In this paper, we improve the method for deriving Jacobi elliptic function solutions of nonlinear evolution equations given in Ref. [12] and apply it to the integrable higher-order Broer-Kaup system in (2+1)-dimens...In this paper, we improve the method for deriving Jacobi elliptic function solutions of nonlinear evolution equations given in Ref. [12] and apply it to the integrable higher-order Broer-Kaup system in (2+1)-dimensional spaces. Some new elliptic function" solutions are obtained.展开更多
Based on the computerized symbolic Maple, we study two important nonlinear evolution equations, i.e., the Hirota equation and the (1+1)-dimensional dispersive long wave equation by use of a direct and unified algebrai...Based on the computerized symbolic Maple, we study two important nonlinear evolution equations, i.e., the Hirota equation and the (1+1)-dimensional dispersive long wave equation by use of a direct and unified algebraic method named the general projective Riccati equation method to find more exact solutions to nonlinear differential equations. The method is more powerful than most of the existing tanh method. New and more general form solutions are obtained. The properties of the new formal solitary wave solutions are shown by some figures.展开更多
基金The project supported in part by the Natural Science Foundation of Education Department of Henan Province of China under Grant No. 2006110002 and the Science Foundations of Henan University of Science and Technology under Grant Nos. 2004ZD002 and 2006ZY001
文摘The purpose of the present paper is twofold. First, the projective Riccati equations (PREs for short) are resolved by means of a linearized theorem, which was known in the literature. Based on the signs and values of coeffcients of PREs, the solutions with two arbitrary parameters of PREs can be expressed by the hyperbolic functions, the trigonometric functions, and the rational functions respectively, at the same time the relation between the components of each solution to PREs is also implemented. Second, more new travelling wave solutions for some nonlinear PDEs, such as the Burgers equation, the mKdV equation, the NLS^+ equation, new Hamilton amplitude equation, and so on, are obtained by using Sub-ODE method, in which PREs are taken as the Sub-ODEs. The key idea of this method is that the travelling wave solutions of nonlinear PDE can be expressed by a polynomial in two variables, which are the components of each solution to PREs, provided that the homogeneous balance between the higher order derivatives and nonlinear terms in the equation is considered.
基金The project supported by National Natural Science Foundation of China under Grant No.10072013the National Key Basic Research Development Program under Grant No.G1998030600
文摘Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272071), the Natural Science Foundation of Zhejiang Province, China (Grant No Y606049) and the Key Academic Discipline of Zhejiang Province, China (Grant No 200412). Acknowledgments The authors are indebted to Professors Zhang J F, Zheng C L and Drs Zhu J M, Huang W H for their helpful suggestions and fruitful discussions.
文摘Using the projective Riccati equation expansion (PREE) method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitrary functions for two nonlinear physical models are obtained. Based on one of the variable separation solutions and by choosing appropriate functions, new types of interactions between the multi-valued and single-valued solitons, such as a peakon-like semi-foldon and a peakon, a compacton-like semi-foldon and a compacton, are investigated.
基金the State Key Basic Research Development Program of China under Grant No.2004CB318000
文摘In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.
基金The project supported by National Natural Science Foundation of China under Grant Nos.40045016 and 40175016
文摘A transformation is introduced on the basis of the projective Riccati equations, and it is applied as an intermediate in expansion method to solve nonlinear Schrǒdinger (NLS) equation and coupled NLS equations. Manykinds of envelope travelling wave solutions including envelope solitary wave solution are obtained, in which some arefound for the first time.
文摘From the controlling equations of atmosphere motion, Prandtl's mixing length theory is used to derive the atmospheric turbulence models, such as Burgers equation model and Burgers-KdV equation model. And then the projective Riccati equations are applied to solve these atmospheric turbulence models, where much more patterns are obtained, including solitary wave pattern, singular pattern, and so on.
文摘Based on computerized symbolic computation,a new method and its algorithm are proposed for searching for exact travelling wave solutions of the nonlinear partial differential equations.Making use of our approach,we investigate the Whitham-Broer-Kaup equation in shallow water and obtain new families of exact solutions,which include soliton-like solutions and periodic solutions.As its special cases,the solutions of classical long wave equations and modified Boussinesq equations can also be found.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province of China
文摘By using the generally projective Riccati equation method, more new exact travelling wave solutions to extended nonlinear Schrodinger equation (NLSE), which describes the femtosecond pulse propagation in monomode optical fiber, are found, which include bright soliton solution, dark soliton solution, new solitary waves, periodic solutions, and rational solutions. The finding of abundant solution structures for extended NLSE helps to study the movement rule of femtosecond pulse propagation in monomode optical fiber.
基金The project supported by National Natural Science Foundation of China under Grant No. 10272071, the Natural Science Foundation of Zhejiang Province under Grant No. Y604106, and the Key Academic Discipline of Zhejiang Province under Grant No. 200412.The authors are in debt to Prof. J.F. Zhang and Dr. W.H. Huang for their helpful suggestions and fruitful discussions.
文摘For a higher-dimensional integrable nonlinear dynamical system, there are abundant coherent soliton excitations. With the aid of an improved projective Riccati equation approach, the paper obtains several types of exact solutions to the (2+l)-dimenslonal dispersive long-wave equation, including multiple-soliton solutions, periodic soliton solutions, and Weierstrass function solutions. From these solutions, apart from several multisoliton excitations, we derive some novel features of wave structures by introducing some types of lower-dimensional patterns.
基金The project supported by National Natural Science Foundation of China under Grant No. 10471096
文摘In this paper, we improve the method for deriving Jacobi elliptic function solutions of nonlinear evolution equations given in Ref. [12] and apply it to the integrable higher-order Broer-Kaup system in (2+1)-dimensional spaces. Some new elliptic function" solutions are obtained.
基金The project supported by National Natural Science Foundation of China under Grant No.10072013the State Key Basic Research Development Program under Grant No.G1998030600
文摘Based on the computerized symbolic Maple, we study two important nonlinear evolution equations, i.e., the Hirota equation and the (1+1)-dimensional dispersive long wave equation by use of a direct and unified algebraic method named the general projective Riccati equation method to find more exact solutions to nonlinear differential equations. The method is more powerful than most of the existing tanh method. New and more general form solutions are obtained. The properties of the new formal solitary wave solutions are shown by some figures.