Special generators of the unoriented cobordism ring MO* are constructed to determine the groups J<sub>n,k</sub><sup>τ</sup> of n-dimensional cobordism classes in MO<sub>n</sub> con...Special generators of the unoriented cobordism ring MO* are constructed to determine the groups J<sub>n,k</sub><sup>τ</sup> of n-dimensional cobordism classes in MO<sub>n</sub> containing a representative M<sup>n</sup> admitting a (Z<sub>2</sub>)<sup>k</sup> -action with fixed point set of constant codimension.展开更多
Special generators of the unoriented cobordism ring MO<sub>*</sub> are constructed to determine some groups J<sub>n,k</sub><sup>l<sub>1</sub>,l<sub>2</sub>,…,l<...Special generators of the unoriented cobordism ring MO<sub>*</sub> are constructed to determine some groups J<sub>n,k</sub><sup>l<sub>1</sub>,l<sub>2</sub>,…,l<sub>m</sub></sup> of cobordism classes in MO<sub>n</sub> containing a representative M<sup>n</sup> admitting a (Z<sub>2</sub>)<sup>k</sup>-action with the fixed point set of(n-l<sub>i</sub>)-dimensional submanifolds of M<sup>n</sup>.展开更多
文摘Special generators of the unoriented cobordism ring MO* are constructed to determine the groups J<sub>n,k</sub><sup>τ</sup> of n-dimensional cobordism classes in MO<sub>n</sub> containing a representative M<sup>n</sup> admitting a (Z<sub>2</sub>)<sup>k</sup> -action with fixed point set of constant codimension.
文摘Special generators of the unoriented cobordism ring MO<sub>*</sub> are constructed to determine some groups J<sub>n,k</sub><sup>l<sub>1</sub>,l<sub>2</sub>,…,l<sub>m</sub></sup> of cobordism classes in MO<sub>n</sub> containing a representative M<sup>n</sup> admitting a (Z<sub>2</sub>)<sup>k</sup>-action with the fixed point set of(n-l<sub>i</sub>)-dimensional submanifolds of M<sup>n</sup>.