利用基于密度泛函理论(DFT)的第一性原理研究了O原子与Pd掺杂前后ZnO(0001)表面的相互作用机理。通过对模型表面六个高对称位吸附能的计算,发现O原子最有可能吸附于Pd掺杂表面的间隙位。从表面的态密度(density of states,DOS)及分波态...利用基于密度泛函理论(DFT)的第一性原理研究了O原子与Pd掺杂前后ZnO(0001)表面的相互作用机理。通过对模型表面六个高对称位吸附能的计算,发现O原子最有可能吸附于Pd掺杂表面的间隙位。从表面的态密度(density of states,DOS)及分波态密度(partial density of states,PDOS)分析结果可以看出,掺杂体系中费米能级附近出现的杂化峰是由O原子的p轨道电子和Pd原子的d轨道电子杂化引起的。掺杂表面的差分电荷密度反映出O原子与Pd原子之间存在大量电荷转移,说明掺入催化剂Pd有助于提高ZnO材料的气敏性能。最后,通过对挥发性有机化合物(VOC)气体的气敏测试验证了理论计算的结论。展开更多
This work is devoted to investigate the elasticity, anisotropy, plastic properties, and thermal conductivity of PdSnYb, PdSn2Yb and Heusler alloy Pd2SnYb via employing the first-principles. The magnetic properties of ...This work is devoted to investigate the elasticity, anisotropy, plastic properties, and thermal conductivity of PdSnYb, PdSn2Yb and Heusler alloy Pd2SnYb via employing the first-principles. The magnetic properties of Pd2SnYb, PdSnYb and PdSn2Yb are obtained by the geometry optimization combining with spin polarization. And the stability of these three kinds of materials is ensured by comparing with the enthalpy of formation and binding energy. The Fermi energy has same trend with stability. The details of bulk and Young’s modulus are demonstrated in 3D plots, embodied the elastic anisotropies of PdSnYb, PdSn2Yb, and Pd2SnYb. The calculations of plastic properties are also anisotropic. And the minimum thermal conductivities are small enough for these three materials to be used as thermal barrier coatings.展开更多
文摘利用基于密度泛函理论(DFT)的第一性原理研究了O原子与Pd掺杂前后ZnO(0001)表面的相互作用机理。通过对模型表面六个高对称位吸附能的计算,发现O原子最有可能吸附于Pd掺杂表面的间隙位。从表面的态密度(density of states,DOS)及分波态密度(partial density of states,PDOS)分析结果可以看出,掺杂体系中费米能级附近出现的杂化峰是由O原子的p轨道电子和Pd原子的d轨道电子杂化引起的。掺杂表面的差分电荷密度反映出O原子与Pd原子之间存在大量电荷转移,说明掺入催化剂Pd有助于提高ZnO材料的气敏性能。最后,通过对挥发性有机化合物(VOC)气体的气敏测试验证了理论计算的结论。
文摘This work is devoted to investigate the elasticity, anisotropy, plastic properties, and thermal conductivity of PdSnYb, PdSn2Yb and Heusler alloy Pd2SnYb via employing the first-principles. The magnetic properties of Pd2SnYb, PdSnYb and PdSn2Yb are obtained by the geometry optimization combining with spin polarization. And the stability of these three kinds of materials is ensured by comparing with the enthalpy of formation and binding energy. The Fermi energy has same trend with stability. The details of bulk and Young’s modulus are demonstrated in 3D plots, embodied the elastic anisotropies of PdSnYb, PdSn2Yb, and Pd2SnYb. The calculations of plastic properties are also anisotropic. And the minimum thermal conductivities are small enough for these three materials to be used as thermal barrier coatings.