A new system is developed to recognize promoter sequences from non promoter sequences based on position weight matrix and backpropagation neural network in this paper. The system performs significantly better on the t...A new system is developed to recognize promoter sequences from non promoter sequences based on position weight matrix and backpropagation neural network in this paper. The system performs significantly better on the training set and the test set, the mean recognition rate is as high as 99% on the training set and 97% on the testing set. Experimental results demonstrate the effectiveness of the system to recognize the promoter sequences that have been trained and the promoter sequences that have not been seen previously.展开更多
The identification of functional motifs in a DNA sequence is fundamentally a statistical pattern recognition problem. This paper introduces a new algorithm for the recognition of functional transcription start sites ...The identification of functional motifs in a DNA sequence is fundamentally a statistical pattern recognition problem. This paper introduces a new algorithm for the recognition of functional transcription start sites (TSSs) in human genome sequences, in which a RBF neural network is adopted, and an improved heuristic method for a 5-tuple feature viable construction, is proposed and implemented in two RBFPromoter and ImpRBFPromoter packages developed in Visual C++ 6.0. The algorithm is evaluated on several different test sequence sets. Compared with several other promoter recognition programs, this algorithm is proved to be more flexible, with stronger learning ability and higher accuracy.展开更多
文摘A new system is developed to recognize promoter sequences from non promoter sequences based on position weight matrix and backpropagation neural network in this paper. The system performs significantly better on the training set and the test set, the mean recognition rate is as high as 99% on the training set and 97% on the testing set. Experimental results demonstrate the effectiveness of the system to recognize the promoter sequences that have been trained and the promoter sequences that have not been seen previously.
基金This work was supported by the National Natural Science Foundation of China (No.60374069)
文摘The identification of functional motifs in a DNA sequence is fundamentally a statistical pattern recognition problem. This paper introduces a new algorithm for the recognition of functional transcription start sites (TSSs) in human genome sequences, in which a RBF neural network is adopted, and an improved heuristic method for a 5-tuple feature viable construction, is proposed and implemented in two RBFPromoter and ImpRBFPromoter packages developed in Visual C++ 6.0. The algorithm is evaluated on several different test sequence sets. Compared with several other promoter recognition programs, this algorithm is proved to be more flexible, with stronger learning ability and higher accuracy.