Accessing drinking water is a global issue. This study aims to contribute to the assessment of groundwater quality in the municipality of Za-Kpota (southern Benin) using remote sensing and Machine Learning. The method...Accessing drinking water is a global issue. This study aims to contribute to the assessment of groundwater quality in the municipality of Za-Kpota (southern Benin) using remote sensing and Machine Learning. The methodological approach used consisted in linking groundwater physico-chemical parameter data collected in the field and in the laboratory using AFNOR 1994 standardized methods to satellite data (Landsat) in order to sketch out a groundwater quality prediction model. The data was processed using QGis (Semi-Automatic Plugin: SCP) and Python (Jupyter Netebook: Prediction) softwares. The results of water analysis from the sampled wells and boreholes indicated that most of the water is acidic (pH varying between 5.59 and 7.83). The water was moderately mineralized, with conductivity values of less than 1500 μs/cm overall (59 µS/cm to 1344 µS/cm), with high concentrations of nitrates and phosphates in places. The dynamics of groundwater quality in the municipality of Za-Kpota between 2008 and 2022 are also marked by a regression in land use units (a regression in vegetation and marshland formation in favor of built-up areas, bare soil, crops and fallow land) revealed by the diachronic analysis of satellite images from 2008, 2013, 2018 and 2022. Surveys of local residents revealed the use of herbicides and pesticides in agricultural fields, which are the main drivers contributing to the groundwater quality deterioration observed in the study area. Field surveys revealed the use of herbicides and pesticides in agricultural fields, which are factors contributing to the deterioration in groundwater quality observed in the study area. The results of the groundwater quality prediction models (ANN, RF and LR) developed led to the conclusion that the model based on Artificial Neural Networks (ANN: R2 = 0.97 and RMSE = 0) is the best for groundwater quality changes modelling in the Za-Kpota municipality.展开更多
The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating condi...The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating conditions,and limited measured signals.Although data-driven methods are perceived as a promising solution,they ignore intrinsic battery physics,leading to compromised accuracy,low efficiency,and low interpretability.In response,this study integrates domain knowledge into deep learning to enhance the RUL prediction performance.We demonstrate accurate RUL prediction using only a single charging curve.First,a generalisable physics-based model is developed to extract ageing-correlated parameters that can describe and explain battery degradation from battery charging data.The parameters inform a deep neural network(DNN)to predict RUL with high accuracy and efficiency.The trained model is validated under 3 types of batteries working under 7 conditions,considering fully charged and partially charged cases.Using data from one cycle only,the proposed method achieves a root mean squared error(RMSE)of 11.42 cycles and a mean absolute relative error(MARE)of 3.19%on average,which are over45%and 44%lower compared to the two state-of-the-art data-driven methods,respectively.Besides its accuracy,the proposed method also outperforms existing methods in terms of efficiency,input burden,and robustness.The inherent relationship between the model parameters and the battery degradation mechanism is further revealed,substantiating the intrinsic superiority of the proposed method.展开更多
Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propo...Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features.This study proposes a hybrid predictive model to assess the RUL of rolling element bearings.The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features.The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm.Subsequently,the extreme learning machine(ELM)approach is applied to develop a predictive model of RUL based on the optimal features.The model is trained by optimizing its parameters via the grid search approach.The training datasets are adjusted to make them most suitable for the regression model using the cross-validation method.The proposed hybrid model is analyzed and validated using the vibration data taken from the public XJTU-SY rolling element-bearing database.The comparison is constructed with other traditional models.The experimental test results demonstrated that the proposed approach can predict the RUL of bearings with a reliable degree of accuracy.展开更多
Supercapacitors are appealing energy storage devices for their promising features like high power density,outstanding cycling stability,and a quick charge–discharge cycle.The exceptional life cycle and ultimate power...Supercapacitors are appealing energy storage devices for their promising features like high power density,outstanding cycling stability,and a quick charge–discharge cycle.The exceptional life cycle and ultimate power capability of supercapacitors are needed in the transportation and renewable energy generation sectors.Hence,predicting the capacitance and lifecycle of supercapacitors is significant for selecting the suitable material and planning replacement intervals for supercapacitors.In addition,system failures can be better addressed by accurately forecasting the lifecycle of SCs.Recently,the use of machine learning for performance prediction of energy storage materials has drawn increasing attention from researchers globally because of its superiority in prediction accuracy,time efficiency,and costeffectiveness.This article presents a detailed review of the progress and advancement of ML techniques for the prediction of capacitance and remaining useful life(RUL)of supercapacitors.The review starts with an introduction to supercapacitor materials and ML applications in energy storage devices,followed by workflow for ML model building for supercapacitor materials.Then,the summary of machine learning applications for the prediction of capacitance and RUL of different supercapacitor materials including EDLCs(carbon based materials),pesudocapacitive(oxides and composites)and hybrid materials is presented.Finally,the general perspective for future directions is also presented.展开更多
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl...Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.展开更多
In this editorial,we comment on the article Adolescent suicide risk factors and the integration of social-emotional skills in school-based prevention programs by Liu et al.While the article focused on the issue of sui...In this editorial,we comment on the article Adolescent suicide risk factors and the integration of social-emotional skills in school-based prevention programs by Liu et al.While the article focused on the issue of suicide and social-emotional learning programs as a possible intervention,we here discuss evidence of other reported outcomes and if it could be an effective way to prevent substance abuse among adolescents.展开更多
With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to th...With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to the applications of earth observation and information retrieval,including climate change monitoring,natural resource investigation,ecological environment protection,and territorial space planning.Over the past decade,artificial intelligence technology represented by deep learning has made significant contributions to the field of Earth observation.Therefore,this review will focus on the bottlenecks and development process of using deep learning methods for land use/land cover mapping of the Earth’s surface.Firstly,it introduces the basic framework of semantic segmentation network models for land use/land cover mapping.Then,we summarize the development of semantic segmentation models in geographical field,focusing on spatial and semantic feature extraction,context relationship perception,multi-scale effects modelling,and the transferability of models under geographical differences.Then,the application of semantic segmentation models in agricultural management,building boundary extraction,single tree segmentation and inter-species classification are reviewed.Finally,we discuss the future development prospects of deep learning technology in the context of remote sensing big data.展开更多
Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(...Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(ELM)and fractal feature analysis.Glaucoma is the second most frequent cause of permanent blindness in industrial展开更多
Eradicating extreme poverty is one of the UN’s primary sustainable development goals(SDG).Arable land is related to eradicating poverty(SDG1)and hunger(SDG2).However,the linkage between arable land use and poverty re...Eradicating extreme poverty is one of the UN’s primary sustainable development goals(SDG).Arable land is related to eradicating poverty(SDG1)and hunger(SDG2).However,the linkage between arable land use and poverty reduction is ambiguous and has seldom been investigated globally.Six indicators of agricultural inputs,crop intensification and extensification were used to explore the relationship between arable land use and poverty.Non-parametric machine learning methods were used to analyze the linkage between agriculture and poverty at the global scale,including the classification and regression tree(CART)and random forest models.We found that the yield gap,fertilizer consumption and potential cropland ratio in protected areas correlated with poverty.Developing countries usually had a ratio of actual to potential yield less than 0.33 and fertilizer consumption less than 7.31 kg/ha.Overall,crop extensification,intensification and agricultural inputs were related to poverty at the global level.展开更多
This paper introduces a novel multi-tiered defense architecture to protect language models from adversarial prompt attacks. We construct adversarial prompts using strategies like role emulation and manipulative assist...This paper introduces a novel multi-tiered defense architecture to protect language models from adversarial prompt attacks. We construct adversarial prompts using strategies like role emulation and manipulative assistance to simulate real threats. We introduce a comprehensive, multi-tiered defense framework named GUARDIAN (Guardrails for Upholding Ethics in Language Models) comprising a system prompt filter, pre-processing filter leveraging a toxic classifier and ethical prompt generator, and pre-display filter using the model itself for output screening. Extensive testing on Meta’s Llama-2 model demonstrates the capability to block 100% of attack prompts. The approach also auto-suggests safer prompt alternatives, thereby bolstering language model security. Quantitatively evaluated defense layers and an ethical substitution mechanism represent key innovations to counter sophisticated attacks. The integrated methodology not only fortifies smaller LLMs against emerging cyber threats but also guides the broader application of LLMs in a secure and ethical manner.展开更多
High-resolution deep-learning-based remote-sensing imagery analysis has been widely used in land-use and crop-classification mapping. However, the influence of composite feature bands, including complex feature indice...High-resolution deep-learning-based remote-sensing imagery analysis has been widely used in land-use and crop-classification mapping. However, the influence of composite feature bands, including complex feature indices arising from different sensors on the backbone, patch size, and predictions in transferable deep models require further testing. The experiments were conducted in six sites in Henan province from2019 to 2021. This study sought to enable the transfer of classification models across regions and years for Sentinel-2 A(10-m resolution) and Gaofen PMS(2-m resolution) imagery. With feature selection and up-sampling of small samples, the performance of UNet++ architecture on five backbones and four patch sizes was examined. Joint loss, mean Intersection over Union(m Io U), and epoch time were analyzed, and the optimal backbone and patch size for both sensors were Timm-Reg Net Y-320 and 256 × 256, respectively. The overall accuracy and Fscores of the Sentinel-2 A predictions ranged from 96.86% to 97.72%and 71.29% to 80.75%, respectively, compared to 75.34%–97.72% and 54.89%–73.25% for the Gaofen predictions. The accuracies of each site indicated that patch size exerted a greater influence on model performance than the backbone. The feature-selection-based predictions with UNet++ architecture and upsampling of minor classes demonstrated the capabilities of deep-learning generalization for classifying complex ground objects, offering improved performance compared to the UNet, Deeplab V3+, Random Forest, and Object-Oriented Classification models. In addition to the overall accuracy, confusion matrices,precision, recall, and F1 scores should be evaluated for minor land-cover types. This study contributes to large-scale, dynamic, and near-real-time land-use and crop mapping by integrating deep learning and multi-source remote-sensing imagery.展开更多
Lithium-ion batteries are the most widely used energy storage devices,for which the accurate prediction of the remaining useful life(RUL)is crucial to their reliable operation and accident prevention.This work thoroug...Lithium-ion batteries are the most widely used energy storage devices,for which the accurate prediction of the remaining useful life(RUL)is crucial to their reliable operation and accident prevention.This work thoroughly investigates the developmental trend of RUL prediction with machine learning(ML)algorithms based on the objective screening and statistics of related papers over the past decade to analyze the research core and find future improvement directions.The possibility of extending lithium-ion battery lifetime using RUL prediction results is also explored in this paper.The ten most used ML algorithms for RUL prediction are first identified in 380 relevant papers.Then the general flow of RUL prediction and an in-depth introduction to the four most used signal pre-processing techniques in RUL prediction are presented.The research core of common ML algorithms is given first time in a uniform format in chronological order.The algorithms are also compared from aspects of accuracy and characteristics comprehensively,and the novel and general improvement directions or opportunities including improvement in early prediction,local regeneration modeling,physical information fusion,generalized transfer learning,and hardware implementation are further outlooked.Finally,the methods of battery lifetime extension are summarized,and the feasibility of using RUL as an indicator for extending battery lifetime is outlooked.Battery lifetime can be extended by optimizing the charging profile serval times according to the accurate RUL prediction results online in the future.This paper aims to give inspiration to the future improvement of ML algorithms in battery RUL prediction and lifetime extension strategy.展开更多
In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However...In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However,existing datafusion prognostic approaches generally rely on the data availability of all sensors,and are vulnerable to potential sensor malfunctions,which are likely to occur in real industries especially for machines in harsh operating environments.In this paper,a deep learning-based remaining useful life(RUL)prediction method is proposed to address the sensor malfunction problem.A global feature extraction scheme is adopted to fully exploit information of different sensors.Adversarial learning is further introduced to extract generalized sensor-invariant features.Through explorations of both global and shared features,promising and robust RUL prediction performance can be achieved by the proposed method in the testing scenarios with sensor malfunctions.The experimental results suggest the proposed approach is well suited for real industrial applications.展开更多
Accurate estimation of the remaining useful life(RUL)of lithium-ion batteries is critical for their large-scale deployment as energy storage devices in electric vehicles and stationary storage.A fundamental understand...Accurate estimation of the remaining useful life(RUL)of lithium-ion batteries is critical for their large-scale deployment as energy storage devices in electric vehicles and stationary storage.A fundamental understanding of the factors affecting RUL is crucial for accelerating battery technology development.However,it is very challenging to predict RUL accurately because of complex degradation mechanisms occurring within the batteries,as well as dynamic operating conditions in practical applications.Moreover,due to insignificant capacity degradation in early stages,early prediction of battery life with early cycle data can be more difficult.In this paper,we propose a hybrid deep learning model for early prediction of battery RUL.The proposed method can effectively combine handcrafted features with domain knowledge and latent features learned by deep networks to boost the performance of RUL early prediction.We also design a non-linear correlation-based method to select effective domain knowledge-based features.Moreover,a novel snapshot ensemble learning strategy is proposed to further enhance model generalization ability without increasing any additional training cost.Our experimental results show that the proposed method not only outperforms other approaches in the primary test set having a similar distribution as the training set,but also generalizes well to the secondary test set having a clearly different distribution with the training set.The PyTorch implementation of our proposed approach is available at https://github.com/batteryrul/battery_rul_early_prediction.展开更多
Introduction: Nursing students’ experiences during the pandemic provoked social isolation, the way to learn and every context increasing their stress and anxiety leading to drug use and abuse, among others. Problem-b...Introduction: Nursing students’ experiences during the pandemic provoked social isolation, the way to learn and every context increasing their stress and anxiety leading to drug use and abuse, among others. Problem-based learning (PBL) is a pedagogic strategy to strengthen significant learning;then the objective was to establish PBL influence in nursing students’ experiences on drug use and abuse during COVID-19 contingency. Methods: Qualitative, phenomenological and descriptive paradigm, 12 female and male nursing students aged 20 - 24 years old from the 5<sup>th</sup> and 6<sup>th</sup> semesters participated. Information collection was through semi-structured interview and a deep one in four cases. A guide of questions about: How the pandemic impacted your life? How did you face it? And what did you learn during this process? Those questions were used. Qualitative data analysis was based on De Souza Minayo, and signed informed consent was obtained from participants. Results: Students’ experiences allowed four categories to emerge, with six sub-categories. Category I. Students’ experiences on drug use and abuse facing the sanitary contingency;Category II. Students’ skills development to identify a problem and design of appropriate solutions;Category III. Developing skills to favor interpersonal relationships;Category IV. Influence of PBL in nursing students’ experiences on drug use and abuse during the COVID-19 contingency. Conclusion: PBL favored analysis and thoughts in nursing students’ experiences on drug use and abuse during the COVID-19 contingency, they worked collaboratively, developed resilience to daily life situations, and implemented stress coping strategies with their significant learning, which diminished their risk behavior.展开更多
This study aims to reveal the students' attitude towards the use of Information and Communication Technology (ICT) as learning English Media, to describe the level of their ability to use ICT, and to portray their ...This study aims to reveal the students' attitude towards the use of Information and Communication Technology (ICT) as learning English Media, to describe the level of their ability to use ICT, and to portray their difficulties to apply Internet at universities. This study used quantitative and qualitative (mixed) method which consisted of two data collection techniques: questionnaire and interview. Respondents total 153 students who responded to the questionnaire and participants interviewed were four students from two private universities in Malang, East Java, Indonesia. The findings show that students have positive attitude towards ICT use as media for learning English. The data analysis strengthens the results which indicate that Intemet as part oflCT functions helps students to elicit useful information. Of the 99.4% participants respond to the questionnaire which stated strongly agree or agree, its mean score is M = 4.69, and its standard deviation is SD = 0.50. The level of students' ability to apply ICT is good. Moreover, interview data indicates that students face two difficulties to apply ICT such as Intemet connection problems and ICT illiteracy. The former is regarding the Intemet facility given by the university. The latter deals with the students' incompetence in applying ICT because they have no Intemet use experience.展开更多
文摘Accessing drinking water is a global issue. This study aims to contribute to the assessment of groundwater quality in the municipality of Za-Kpota (southern Benin) using remote sensing and Machine Learning. The methodological approach used consisted in linking groundwater physico-chemical parameter data collected in the field and in the laboratory using AFNOR 1994 standardized methods to satellite data (Landsat) in order to sketch out a groundwater quality prediction model. The data was processed using QGis (Semi-Automatic Plugin: SCP) and Python (Jupyter Netebook: Prediction) softwares. The results of water analysis from the sampled wells and boreholes indicated that most of the water is acidic (pH varying between 5.59 and 7.83). The water was moderately mineralized, with conductivity values of less than 1500 μs/cm overall (59 µS/cm to 1344 µS/cm), with high concentrations of nitrates and phosphates in places. The dynamics of groundwater quality in the municipality of Za-Kpota between 2008 and 2022 are also marked by a regression in land use units (a regression in vegetation and marshland formation in favor of built-up areas, bare soil, crops and fallow land) revealed by the diachronic analysis of satellite images from 2008, 2013, 2018 and 2022. Surveys of local residents revealed the use of herbicides and pesticides in agricultural fields, which are the main drivers contributing to the groundwater quality deterioration observed in the study area. Field surveys revealed the use of herbicides and pesticides in agricultural fields, which are factors contributing to the deterioration in groundwater quality observed in the study area. The results of the groundwater quality prediction models (ANN, RF and LR) developed led to the conclusion that the model based on Artificial Neural Networks (ANN: R2 = 0.97 and RMSE = 0) is the best for groundwater quality changes modelling in the Za-Kpota municipality.
基金the financial support from the National Natural Science Foundation of China(52207229)the financial support from the China Scholarship Council(202207550010)。
文摘The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating conditions,and limited measured signals.Although data-driven methods are perceived as a promising solution,they ignore intrinsic battery physics,leading to compromised accuracy,low efficiency,and low interpretability.In response,this study integrates domain knowledge into deep learning to enhance the RUL prediction performance.We demonstrate accurate RUL prediction using only a single charging curve.First,a generalisable physics-based model is developed to extract ageing-correlated parameters that can describe and explain battery degradation from battery charging data.The parameters inform a deep neural network(DNN)to predict RUL with high accuracy and efficiency.The trained model is validated under 3 types of batteries working under 7 conditions,considering fully charged and partially charged cases.Using data from one cycle only,the proposed method achieves a root mean squared error(RMSE)of 11.42 cycles and a mean absolute relative error(MARE)of 3.19%on average,which are over45%and 44%lower compared to the two state-of-the-art data-driven methods,respectively.Besides its accuracy,the proposed method also outperforms existing methods in terms of efficiency,input burden,and robustness.The inherent relationship between the model parameters and the battery degradation mechanism is further revealed,substantiating the intrinsic superiority of the proposed method.
基金supported by the Anhui Provincial Key Research and Development Project(202104a07020005)the University Synergy Innovation Program of Anhui Province(GXXT-2022-019)+1 种基金the Institute of Energy,Hefei Comprehensive National Science Center under Grant No.21KZS217Scientific Research Foundation for High-Level Talents of Anhui University of Science and Technology(13210024).
文摘Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features.This study proposes a hybrid predictive model to assess the RUL of rolling element bearings.The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features.The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm.Subsequently,the extreme learning machine(ELM)approach is applied to develop a predictive model of RUL based on the optimal features.The model is trained by optimizing its parameters via the grid search approach.The training datasets are adjusted to make them most suitable for the regression model using the cross-validation method.The proposed hybrid model is analyzed and validated using the vibration data taken from the public XJTU-SY rolling element-bearing database.The comparison is constructed with other traditional models.The experimental test results demonstrated that the proposed approach can predict the RUL of bearings with a reliable degree of accuracy.
基金Shivaji University,Kolhapur for financial assistance through Research Strengthening Scheme。
文摘Supercapacitors are appealing energy storage devices for their promising features like high power density,outstanding cycling stability,and a quick charge–discharge cycle.The exceptional life cycle and ultimate power capability of supercapacitors are needed in the transportation and renewable energy generation sectors.Hence,predicting the capacitance and lifecycle of supercapacitors is significant for selecting the suitable material and planning replacement intervals for supercapacitors.In addition,system failures can be better addressed by accurately forecasting the lifecycle of SCs.Recently,the use of machine learning for performance prediction of energy storage materials has drawn increasing attention from researchers globally because of its superiority in prediction accuracy,time efficiency,and costeffectiveness.This article presents a detailed review of the progress and advancement of ML techniques for the prediction of capacitance and remaining useful life(RUL)of supercapacitors.The review starts with an introduction to supercapacitor materials and ML applications in energy storage devices,followed by workflow for ML model building for supercapacitor materials.Then,the summary of machine learning applications for the prediction of capacitance and RUL of different supercapacitor materials including EDLCs(carbon based materials),pesudocapacitive(oxides and composites)and hybrid materials is presented.Finally,the general perspective for future directions is also presented.
文摘Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.
文摘In this editorial,we comment on the article Adolescent suicide risk factors and the integration of social-emotional skills in school-based prevention programs by Liu et al.While the article focused on the issue of suicide and social-emotional learning programs as a possible intervention,we here discuss evidence of other reported outcomes and if it could be an effective way to prevent substance abuse among adolescents.
基金National Natural Science Foundation of China(Nos.42371406,42071441,42222106,61976234).
文摘With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to the applications of earth observation and information retrieval,including climate change monitoring,natural resource investigation,ecological environment protection,and territorial space planning.Over the past decade,artificial intelligence technology represented by deep learning has made significant contributions to the field of Earth observation.Therefore,this review will focus on the bottlenecks and development process of using deep learning methods for land use/land cover mapping of the Earth’s surface.Firstly,it introduces the basic framework of semantic segmentation network models for land use/land cover mapping.Then,we summarize the development of semantic segmentation models in geographical field,focusing on spatial and semantic feature extraction,context relationship perception,multi-scale effects modelling,and the transferability of models under geographical differences.Then,the application of semantic segmentation models in agricultural management,building boundary extraction,single tree segmentation and inter-species classification are reviewed.Finally,we discuss the future development prospects of deep learning technology in the context of remote sensing big data.
文摘Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(ELM)and fractal feature analysis.Glaucoma is the second most frequent cause of permanent blindness in industrial
基金supported financially by the National Key Research and Development Program(Grant No.2016YFA0600304)the National Natural Science Foundation of China(Grant No.41861144019)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA19030201).
文摘Eradicating extreme poverty is one of the UN’s primary sustainable development goals(SDG).Arable land is related to eradicating poverty(SDG1)and hunger(SDG2).However,the linkage between arable land use and poverty reduction is ambiguous and has seldom been investigated globally.Six indicators of agricultural inputs,crop intensification and extensification were used to explore the relationship between arable land use and poverty.Non-parametric machine learning methods were used to analyze the linkage between agriculture and poverty at the global scale,including the classification and regression tree(CART)and random forest models.We found that the yield gap,fertilizer consumption and potential cropland ratio in protected areas correlated with poverty.Developing countries usually had a ratio of actual to potential yield less than 0.33 and fertilizer consumption less than 7.31 kg/ha.Overall,crop extensification,intensification and agricultural inputs were related to poverty at the global level.
文摘This paper introduces a novel multi-tiered defense architecture to protect language models from adversarial prompt attacks. We construct adversarial prompts using strategies like role emulation and manipulative assistance to simulate real threats. We introduce a comprehensive, multi-tiered defense framework named GUARDIAN (Guardrails for Upholding Ethics in Language Models) comprising a system prompt filter, pre-processing filter leveraging a toxic classifier and ethical prompt generator, and pre-display filter using the model itself for output screening. Extensive testing on Meta’s Llama-2 model demonstrates the capability to block 100% of attack prompts. The approach also auto-suggests safer prompt alternatives, thereby bolstering language model security. Quantitatively evaluated defense layers and an ethical substitution mechanism represent key innovations to counter sophisticated attacks. The integrated methodology not only fortifies smaller LLMs against emerging cyber threats but also guides the broader application of LLMs in a secure and ethical manner.
基金supported by the National Science and Technology Platform Construction (2005DKA32300)the Major Research Projects of the Ministry of Education (16JJD770019)the Open Program of Collaborative Innovation Center of Geo-Information Technology for Smart Central Plains Henan Province (G202006)。
文摘High-resolution deep-learning-based remote-sensing imagery analysis has been widely used in land-use and crop-classification mapping. However, the influence of composite feature bands, including complex feature indices arising from different sensors on the backbone, patch size, and predictions in transferable deep models require further testing. The experiments were conducted in six sites in Henan province from2019 to 2021. This study sought to enable the transfer of classification models across regions and years for Sentinel-2 A(10-m resolution) and Gaofen PMS(2-m resolution) imagery. With feature selection and up-sampling of small samples, the performance of UNet++ architecture on five backbones and four patch sizes was examined. Joint loss, mean Intersection over Union(m Io U), and epoch time were analyzed, and the optimal backbone and patch size for both sensors were Timm-Reg Net Y-320 and 256 × 256, respectively. The overall accuracy and Fscores of the Sentinel-2 A predictions ranged from 96.86% to 97.72%and 71.29% to 80.75%, respectively, compared to 75.34%–97.72% and 54.89%–73.25% for the Gaofen predictions. The accuracies of each site indicated that patch size exerted a greater influence on model performance than the backbone. The feature-selection-based predictions with UNet++ architecture and upsampling of minor classes demonstrated the capabilities of deep-learning generalization for classifying complex ground objects, offering improved performance compared to the UNet, Deeplab V3+, Random Forest, and Object-Oriented Classification models. In addition to the overall accuracy, confusion matrices,precision, recall, and F1 scores should be evaluated for minor land-cover types. This study contributes to large-scale, dynamic, and near-real-time land-use and crop mapping by integrating deep learning and multi-source remote-sensing imagery.
基金funded by China Scholarship Council,The fund numbers are 202108320111,202208320055。
文摘Lithium-ion batteries are the most widely used energy storage devices,for which the accurate prediction of the remaining useful life(RUL)is crucial to their reliable operation and accident prevention.This work thoroughly investigates the developmental trend of RUL prediction with machine learning(ML)algorithms based on the objective screening and statistics of related papers over the past decade to analyze the research core and find future improvement directions.The possibility of extending lithium-ion battery lifetime using RUL prediction results is also explored in this paper.The ten most used ML algorithms for RUL prediction are first identified in 380 relevant papers.Then the general flow of RUL prediction and an in-depth introduction to the four most used signal pre-processing techniques in RUL prediction are presented.The research core of common ML algorithms is given first time in a uniform format in chronological order.The algorithms are also compared from aspects of accuracy and characteristics comprehensively,and the novel and general improvement directions or opportunities including improvement in early prediction,local regeneration modeling,physical information fusion,generalized transfer learning,and hardware implementation are further outlooked.Finally,the methods of battery lifetime extension are summarized,and the feasibility of using RUL as an indicator for extending battery lifetime is outlooked.Battery lifetime can be extended by optimizing the charging profile serval times according to the accurate RUL prediction results online in the future.This paper aims to give inspiration to the future improvement of ML algorithms in battery RUL prediction and lifetime extension strategy.
基金supported by the National Science Fund for Distinguished Young Scholars of China(52025056)Fundamental Research Funds for the Central Universities(xzy012022062)。
文摘In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However,existing datafusion prognostic approaches generally rely on the data availability of all sensors,and are vulnerable to potential sensor malfunctions,which are likely to occur in real industries especially for machines in harsh operating environments.In this paper,a deep learning-based remaining useful life(RUL)prediction method is proposed to address the sensor malfunction problem.A global feature extraction scheme is adopted to fully exploit information of different sensors.Adversarial learning is further introduced to extract generalized sensor-invariant features.Through explorations of both global and shared features,promising and robust RUL prediction performance can be achieved by the proposed method in the testing scenarios with sensor malfunctions.The experimental results suggest the proposed approach is well suited for real industrial applications.
基金supported by Agency for Science,Technology and Research(A*STAR)under the Career Development Fund(C210112037)。
文摘Accurate estimation of the remaining useful life(RUL)of lithium-ion batteries is critical for their large-scale deployment as energy storage devices in electric vehicles and stationary storage.A fundamental understanding of the factors affecting RUL is crucial for accelerating battery technology development.However,it is very challenging to predict RUL accurately because of complex degradation mechanisms occurring within the batteries,as well as dynamic operating conditions in practical applications.Moreover,due to insignificant capacity degradation in early stages,early prediction of battery life with early cycle data can be more difficult.In this paper,we propose a hybrid deep learning model for early prediction of battery RUL.The proposed method can effectively combine handcrafted features with domain knowledge and latent features learned by deep networks to boost the performance of RUL early prediction.We also design a non-linear correlation-based method to select effective domain knowledge-based features.Moreover,a novel snapshot ensemble learning strategy is proposed to further enhance model generalization ability without increasing any additional training cost.Our experimental results show that the proposed method not only outperforms other approaches in the primary test set having a similar distribution as the training set,but also generalizes well to the secondary test set having a clearly different distribution with the training set.The PyTorch implementation of our proposed approach is available at https://github.com/batteryrul/battery_rul_early_prediction.
文摘Introduction: Nursing students’ experiences during the pandemic provoked social isolation, the way to learn and every context increasing their stress and anxiety leading to drug use and abuse, among others. Problem-based learning (PBL) is a pedagogic strategy to strengthen significant learning;then the objective was to establish PBL influence in nursing students’ experiences on drug use and abuse during COVID-19 contingency. Methods: Qualitative, phenomenological and descriptive paradigm, 12 female and male nursing students aged 20 - 24 years old from the 5<sup>th</sup> and 6<sup>th</sup> semesters participated. Information collection was through semi-structured interview and a deep one in four cases. A guide of questions about: How the pandemic impacted your life? How did you face it? And what did you learn during this process? Those questions were used. Qualitative data analysis was based on De Souza Minayo, and signed informed consent was obtained from participants. Results: Students’ experiences allowed four categories to emerge, with six sub-categories. Category I. Students’ experiences on drug use and abuse facing the sanitary contingency;Category II. Students’ skills development to identify a problem and design of appropriate solutions;Category III. Developing skills to favor interpersonal relationships;Category IV. Influence of PBL in nursing students’ experiences on drug use and abuse during the COVID-19 contingency. Conclusion: PBL favored analysis and thoughts in nursing students’ experiences on drug use and abuse during the COVID-19 contingency, they worked collaboratively, developed resilience to daily life situations, and implemented stress coping strategies with their significant learning, which diminished their risk behavior.
文摘This study aims to reveal the students' attitude towards the use of Information and Communication Technology (ICT) as learning English Media, to describe the level of their ability to use ICT, and to portray their difficulties to apply Internet at universities. This study used quantitative and qualitative (mixed) method which consisted of two data collection techniques: questionnaire and interview. Respondents total 153 students who responded to the questionnaire and participants interviewed were four students from two private universities in Malang, East Java, Indonesia. The findings show that students have positive attitude towards ICT use as media for learning English. The data analysis strengthens the results which indicate that Intemet as part oflCT functions helps students to elicit useful information. Of the 99.4% participants respond to the questionnaire which stated strongly agree or agree, its mean score is M = 4.69, and its standard deviation is SD = 0.50. The level of students' ability to apply ICT is good. Moreover, interview data indicates that students face two difficulties to apply ICT such as Intemet connection problems and ICT illiteracy. The former is regarding the Intemet facility given by the university. The latter deals with the students' incompetence in applying ICT because they have no Intemet use experience.