The history,the major achievements in both methodology and applications,the current trends and future perspectives of neutron activation analysis (NAA) in China are briefly described.
Prompt gamma neutron activation analysis (PGNAA) is a non-destructive online measurement nuclear analysis method. With its unique advantages, it has been widely used in online analysis of industrial materials such as ...Prompt gamma neutron activation analysis (PGNAA) is a non-destructive online measurement nuclear analysis method. With its unique advantages, it has been widely used in online analysis of industrial materials such as coal, cement, and minerals in recent years. </span><span style="font-family:Verdana;">However, there are many kinds of literature on PGNAA in the field of industrial materials detection, and there are still a few concluding articles. To this end,</span><span style="font-family:Verdana;"> based on the principle of PGNAA online analysis, the status quo and development of the real-time online detection of industrial material components in the field are reviewed and discussed by consulting a large number of domestic and foreign PGNAA related literature and data, to facilitate the reference of relevant scientific researchers.展开更多
This paper introduces the principles, instrumentation, implementation, and industrial applications of an on- line thermal neutron prompt- gamma element analysis system (using a 252Cf neutron source, Am- Be neutron sou...This paper introduces the principles, instrumentation, implementation, and industrial applications of an on- line thermal neutron prompt- gamma element analysis system (using a 252Cf neutron source, Am- Be neutron source, or neutron generator). The energy resolution of the system at the H prompt- gamma full- energy photopeak (2.22325 MeV) is 3.6 keV. The concentration measurement error of A12O3, Fe2O3, CaO and SiO2 is ±0.3%,±0.1%.±0.4% and ±0.4%, respectively.The system has been tested on- site at both the Shandong and the Zhengzhou Aluminum Works. Our preliminary on- site measurements confirm that the stability, reliability, measurement range, and accuracy of the system can meet the requirements of the aluminum production process. Facilitation of this measurement at aluminum plants is expected to reduce plant costs by over 3 million dollars annually through reduced energy consumption, more rapid qualification of pulps being mixed during the production process, and in reduced labor costs.展开更多
文摘The history,the major achievements in both methodology and applications,the current trends and future perspectives of neutron activation analysis (NAA) in China are briefly described.
文摘Prompt gamma neutron activation analysis (PGNAA) is a non-destructive online measurement nuclear analysis method. With its unique advantages, it has been widely used in online analysis of industrial materials such as coal, cement, and minerals in recent years. </span><span style="font-family:Verdana;">However, there are many kinds of literature on PGNAA in the field of industrial materials detection, and there are still a few concluding articles. To this end,</span><span style="font-family:Verdana;"> based on the principle of PGNAA online analysis, the status quo and development of the real-time online detection of industrial material components in the field are reviewed and discussed by consulting a large number of domestic and foreign PGNAA related literature and data, to facilitate the reference of relevant scientific researchers.
文摘This paper introduces the principles, instrumentation, implementation, and industrial applications of an on- line thermal neutron prompt- gamma element analysis system (using a 252Cf neutron source, Am- Be neutron source, or neutron generator). The energy resolution of the system at the H prompt- gamma full- energy photopeak (2.22325 MeV) is 3.6 keV. The concentration measurement error of A12O3, Fe2O3, CaO and SiO2 is ±0.3%,±0.1%.±0.4% and ±0.4%, respectively.The system has been tested on- site at both the Shandong and the Zhengzhou Aluminum Works. Our preliminary on- site measurements confirm that the stability, reliability, measurement range, and accuracy of the system can meet the requirements of the aluminum production process. Facilitation of this measurement at aluminum plants is expected to reduce plant costs by over 3 million dollars annually through reduced energy consumption, more rapid qualification of pulps being mixed during the production process, and in reduced labor costs.