We report physics based confirmation(~1% RMS deviation), by existing experimental data, of protonprohol(proton-hole) ion product(p H) and mobilities in pure liquid water(0-100℃, 1-atm pressure) anticipated fr...We report physics based confirmation(~1% RMS deviation), by existing experimental data, of protonprohol(proton-hole) ion product(p H) and mobilities in pure liquid water(0-100℃, 1-atm pressure) anticipated from our melted-ice Hexagonal-Close-Packed(H_2O)_4Lattice Model. Five phonons are identified.(1) A propagating protonic phonon(520.9 meV from lone-pair-blue-shifted stretching mode of isolated water molecule) absorbed to generate a proton-prohol pair or detrap a tightly-bound proton.(2) Two(173.4 and 196.6 meV) bending-breathing protonic-proholic or protonic phonons absorbed during de-trapping-limited proton or proton-prohol mobilities.(3)Two propagating oxygenic-wateric Debye-Dispersive phonons(30.3 and 27.5 meV) absorbed during scatteringlimited proton or proton-prohol mobilities.展开更多
文摘We report physics based confirmation(~1% RMS deviation), by existing experimental data, of protonprohol(proton-hole) ion product(p H) and mobilities in pure liquid water(0-100℃, 1-atm pressure) anticipated from our melted-ice Hexagonal-Close-Packed(H_2O)_4Lattice Model. Five phonons are identified.(1) A propagating protonic phonon(520.9 meV from lone-pair-blue-shifted stretching mode of isolated water molecule) absorbed to generate a proton-prohol pair or detrap a tightly-bound proton.(2) Two(173.4 and 196.6 meV) bending-breathing protonic-proholic or protonic phonons absorbed during de-trapping-limited proton or proton-prohol mobilities.(3)Two propagating oxygenic-wateric Debye-Dispersive phonons(30.3 and 27.5 meV) absorbed during scatteringlimited proton or proton-prohol mobilities.