To design a propeller for ship power plant,the interaction between ship hull and propeller must be taken into account.The main concern is to apply the wake effect of ship stern on the propeller performance.In this pap...To design a propeller for ship power plant,the interaction between ship hull and propeller must be taken into account.The main concern is to apply the wake effect of ship stern on the propeller performance.In this paper,a coupled BEM(Boundary Element Method)/RANS(Renolds-Averaged Navier−Stokes)solver is used to simulate propeller behind the hull in the self-propulsion test.The motivation of this work is to develop a practical tool to design marine propulsion system without suffering long computational time.An unsteady boundary element method which is also known as panel method is chosen to estimate the propeller forces.Propeller wakes are treated using a time marching wake alignment method.Also,a RANS code coupled with VoF equation is developed to consider the ship motions and wake field effects in the problem.A coupling algorithm is developed to interchange ship wake field to the potential flow solver and propeller thrust to the RANS code.Based on the difference between hull resistance and the propeller thrust,a PI controller is developed to compute the propeller RPM in every time step.Verification of the solver is carried out using the towing tank test report of a 50 m oceanography research vessel.Wake factor and trust deduction coefficient are estimated numerically.Also,the wake rollup pattern of the propeller in open water is compared with the propeller in real wake field.展开更多
AIM:To describe the subcutaneous pedicled propeller flap technique for the microscopic reconstruction of eyelid defects and evaluate its outcomes.METHODS:The clinical data of 23 patients(23 eyes)who underwent microsco...AIM:To describe the subcutaneous pedicled propeller flap technique for the microscopic reconstruction of eyelid defects and evaluate its outcomes.METHODS:The clinical data of 23 patients(23 eyes)who underwent microscopic reconstruction of eyelid defects with the subcutaneous pedicled propeller flap technique were retrospectively analyzed.All patients underwent eyelid tumor resection and one-stage microscopic reconstruction with the subcutaneous pedicled propeller flap for anterioror posterior-layer eyelid defects.The survival rate of the propeller flap,eyelid function and appearance,tumor recurrence rate,and patient satisfaction were evaluated after the surgery.RESULTS:The patients consisted of 12 men and 11 women,aged 31–82y(mean,58.9y).The longest followup time was 5y,and the shortest was 3mo.All the propeller flaps survived well.There was no significant difference in color and luster between the flap and adjacent tissues,and there was no dog ear phenomenon.No obvious scarring was observed.There were no obvious abnormalities of eyelid morphology or function,and no adverse complications such as exposure keratitis,entropion,ectropion,ptosis,and eyelid retraction.No tumor recurrence was found at the time of the last follow-up.All patients were satisfied with the surgical results.CONCLUSION:The subcutaneous pedicled propeller flap technique for the microscopic reconstruction of eyelid defects has satisfactor y outcomes in terms of eyelid function and esthetics,and merits clinical application.展开更多
Taking the model for propeller transport aircraft as the research object,according to the transient windmill characteristics in the process of stop feathering and starting in the air,the simulation calculation of diff...Taking the model for propeller transport aircraft as the research object,according to the transient windmill characteristics in the process of stop feathering and starting in the air,the simulation calculation of different flight heights,blade angles and rotation speeds was carried out,and the transient windmill resistance of the propeller was quantitatively given.The engine torque was calculated by using the simulation model are compared and verified using the flight test data,and the maximum error was 74%.In the windmill state,the airflow works on the propeller,and the airflow velocity behind the propeller disk decreases,wrapping the entire nacelle surface.In the process of parking feathering,the blade angle decreases slightly at first,and then increases rapidly under the action of the large⁃pitch oil pressure,and the speed of rotation increases gradually.When the blade angle at 30°,the windmill resistance at-108 kgf.In the process of starting,the propeller speed increases and the propeller resistance increases first and decreases.When the propeller returns to 14°,the transient windmill resistance at-1720 kgf.展开更多
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i...The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.展开更多
A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac...A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.展开更多
Regarding the scale effects on propeller's noncavitation hydrodynamics and hydroacoustics, three similar 7bladed highly-skewed propellers in the wake flow are addressed with diameters of 250, 500 and 1 000 mm, respec...Regarding the scale effects on propeller's noncavitation hydrodynamics and hydroacoustics, three similar 7bladed highly-skewed propellers in the wake flow are addressed with diameters of 250, 500 and 1 000 mm, respectively. The discrete line-spectrum noise and its standardized spectrum level scaling law, together with the total sound pressure level are analyzed. The non-cavitation noise predictions are completed by both the frequency domain method and the time domain method. As a fluctuated noise source, the time-dependent fluctuated pressure and normal velocity distribution on propeller blades are obtained by the unsteady Reynolds-averaged Navier-Stokes ( URANS ) simulation. Results show that the pressure coefficient distribution of three propellers on the 0.7R section is nearly superposed under the same advance ratio. The periodic thrust fluctuation of three propellers can exactly reflect the tonal components of the axial passing frequency (APF) and the blade passing frequency (BPF), and the fluctuation enhancement from the small to the middle propeller at the BPF is greater than that from the middle to the big one. By the two noise prediction methods, the increment of the total sound pressure level from the small to the big propeller differs by 2.49 dB. Following the standardized scaling law, the spectrum curves of the middle and big propellers are nearly the same while significantly differing from the small one. The increment of both the line-spectrum level and the total sound pressure increases with the increase in diameter. It is suggested that the model scale of the propeller should be as large as possible in engineering to reduce the prediction error of the empirical scalin~ law and weaken the scale effects.展开更多
文摘To design a propeller for ship power plant,the interaction between ship hull and propeller must be taken into account.The main concern is to apply the wake effect of ship stern on the propeller performance.In this paper,a coupled BEM(Boundary Element Method)/RANS(Renolds-Averaged Navier−Stokes)solver is used to simulate propeller behind the hull in the self-propulsion test.The motivation of this work is to develop a practical tool to design marine propulsion system without suffering long computational time.An unsteady boundary element method which is also known as panel method is chosen to estimate the propeller forces.Propeller wakes are treated using a time marching wake alignment method.Also,a RANS code coupled with VoF equation is developed to consider the ship motions and wake field effects in the problem.A coupling algorithm is developed to interchange ship wake field to the potential flow solver and propeller thrust to the RANS code.Based on the difference between hull resistance and the propeller thrust,a PI controller is developed to compute the propeller RPM in every time step.Verification of the solver is carried out using the towing tank test report of a 50 m oceanography research vessel.Wake factor and trust deduction coefficient are estimated numerically.Also,the wake rollup pattern of the propeller in open water is compared with the propeller in real wake field.
基金Supported by the Young Talent Program of Gusu Health Project(No.GSWS2020014)。
文摘AIM:To describe the subcutaneous pedicled propeller flap technique for the microscopic reconstruction of eyelid defects and evaluate its outcomes.METHODS:The clinical data of 23 patients(23 eyes)who underwent microscopic reconstruction of eyelid defects with the subcutaneous pedicled propeller flap technique were retrospectively analyzed.All patients underwent eyelid tumor resection and one-stage microscopic reconstruction with the subcutaneous pedicled propeller flap for anterioror posterior-layer eyelid defects.The survival rate of the propeller flap,eyelid function and appearance,tumor recurrence rate,and patient satisfaction were evaluated after the surgery.RESULTS:The patients consisted of 12 men and 11 women,aged 31–82y(mean,58.9y).The longest followup time was 5y,and the shortest was 3mo.All the propeller flaps survived well.There was no significant difference in color and luster between the flap and adjacent tissues,and there was no dog ear phenomenon.No obvious scarring was observed.There were no obvious abnormalities of eyelid morphology or function,and no adverse complications such as exposure keratitis,entropion,ectropion,ptosis,and eyelid retraction.No tumor recurrence was found at the time of the last follow-up.All patients were satisfied with the surgical results.CONCLUSION:The subcutaneous pedicled propeller flap technique for the microscopic reconstruction of eyelid defects has satisfactor y outcomes in terms of eyelid function and esthetics,and merits clinical application.
文摘Taking the model for propeller transport aircraft as the research object,according to the transient windmill characteristics in the process of stop feathering and starting in the air,the simulation calculation of different flight heights,blade angles and rotation speeds was carried out,and the transient windmill resistance of the propeller was quantitatively given.The engine torque was calculated by using the simulation model are compared and verified using the flight test data,and the maximum error was 74%.In the windmill state,the airflow works on the propeller,and the airflow velocity behind the propeller disk decreases,wrapping the entire nacelle surface.In the process of parking feathering,the blade angle decreases slightly at first,and then increases rapidly under the action of the large⁃pitch oil pressure,and the speed of rotation increases gradually.When the blade angle at 30°,the windmill resistance at-108 kgf.In the process of starting,the propeller speed increases and the propeller resistance increases first and decreases.When the propeller returns to 14°,the transient windmill resistance at-1720 kgf.
基金the support of the National Natural Science Foundation of China grant number 51776175。
文摘The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.
基金supported by the Program for National Defense Science and Technology Foundation Strengtheningthe Youth Foundation of Rocket Force University of Engineering(Grant No.2021QN-B014)。
文摘A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.
基金The National Natural Science Foundation of China(No.51009144)
文摘Regarding the scale effects on propeller's noncavitation hydrodynamics and hydroacoustics, three similar 7bladed highly-skewed propellers in the wake flow are addressed with diameters of 250, 500 and 1 000 mm, respectively. The discrete line-spectrum noise and its standardized spectrum level scaling law, together with the total sound pressure level are analyzed. The non-cavitation noise predictions are completed by both the frequency domain method and the time domain method. As a fluctuated noise source, the time-dependent fluctuated pressure and normal velocity distribution on propeller blades are obtained by the unsteady Reynolds-averaged Navier-Stokes ( URANS ) simulation. Results show that the pressure coefficient distribution of three propellers on the 0.7R section is nearly superposed under the same advance ratio. The periodic thrust fluctuation of three propellers can exactly reflect the tonal components of the axial passing frequency (APF) and the blade passing frequency (BPF), and the fluctuation enhancement from the small to the middle propeller at the BPF is greater than that from the middle to the big one. By the two noise prediction methods, the increment of the total sound pressure level from the small to the big propeller differs by 2.49 dB. Following the standardized scaling law, the spectrum curves of the middle and big propellers are nearly the same while significantly differing from the small one. The increment of both the line-spectrum level and the total sound pressure increases with the increase in diameter. It is suggested that the model scale of the propeller should be as large as possible in engineering to reduce the prediction error of the empirical scalin~ law and weaken the scale effects.