This paper is devoted to the assessment of ship maneuvering simulation using different propeller models with the focus on a simplified propeller model that represents the action of the propeller by body force and uses...This paper is devoted to the assessment of ship maneuvering simulation using different propeller models with the focus on a simplified propeller model that represents the action of the propeller by body force and uses propeller performance curve to determine propeller loading during ship maneuvering.Simulations are also performed with an actual propeller approach with which the propeller rotation is simulated directly with the Reynolds averaged Navier-Stokes equation(RANSE)solver.Both time accurate simulations using sliding grid and rotating frame approximations have been performed for comparison.The zigzag and turning circle maneuvers in calm water have been simulated for two different ship models,namely the ONR tumblehome(ONRT)test case and the KRISO(Korea Research Institute of Ship and Ocean)Container Ship(KCS)test case.Predicted ship motion is compared with measurement data to assess the accuracy of the numerical prediction using RANSE computations with different propeller models.展开更多
In this paper,after the successful applications to open water propeller performance estimations,the influence of transition sensitive and modified mass transfer models tuned to account for the laminar flow in the pred...In this paper,after the successful applications to open water propeller performance estimations,the influence of transition sensitive and modified mass transfer models tuned to account for the laminar flow in the prediction of the cavitation inception of marine propulsors is investigated from the point of view of the unsteady functioning and induced pressure pulses.The VP1304(also known as PPTC)test case,for which dedicated data were collected during several workshops,is considered first.After preliminary analyses using RANS,also Detached Eddy Simulations(DES)are included to better account for the vortex dynamics and its influence on pressure pulses.Similarly to what observed in uniform inflow,results show a better agreement with the available measurements of propeller performances and confirm the reliability of the proposed approaches for unsteady,non-cavitating,model scale propeller predictions.The overall cavitation pattern is improved too by the application of the transition sensitive correction to the mass transfer model,but the complex dynamics of bubble cavitation observed in experiments prevents quantitatively better predictions in terms of thrust/torque breakdown and induced pressure pulses levels regardless the use of RANS or DES methods.展开更多
Aiming to maximize the aerodynamic performance of the Distributed Electric Propulsion(DEP)aircraft,a hybrid design framework which focuses on the aerodynamic performance of the propeller/wing integration has been deve...Aiming to maximize the aerodynamic performance of the Distributed Electric Propulsion(DEP)aircraft,a hybrid design framework which focuses on the aerodynamic performance of the propeller/wing integration has been developed and validated numerically.Variable-fidelity modelling for propeller aerodynamics has been used to achieve computational efficiency with reasonable accuracy.By optimizing the aerodynamic loading distributions on the tractor propeller disk,the induced slipstream is redistributed into a form that is beneficial for the wing downstream,based on which the propeller blade geometry is generated through a rapid inversed design procedure.As compared with the Minimum Induced Loss(MIL)propeller at a specified thrust level,significant improvements of both the lift-to-drag ratio of the wing and the propeller/wing integrated aerodynamic efficiency is achieved,which shows great promise to deliver aerodynamic benefits for the wing within the propeller slipstream without any additional devices.展开更多
基金This work was made possible thanks to granted access to the HPC resources of CINES and IDRIS computing centers under the allocation A0072A01308 made by Grand Equipement National de Calcul Intensif(GENCI).
文摘This paper is devoted to the assessment of ship maneuvering simulation using different propeller models with the focus on a simplified propeller model that represents the action of the propeller by body force and uses propeller performance curve to determine propeller loading during ship maneuvering.Simulations are also performed with an actual propeller approach with which the propeller rotation is simulated directly with the Reynolds averaged Navier-Stokes equation(RANSE)solver.Both time accurate simulations using sliding grid and rotating frame approximations have been performed for comparison.The zigzag and turning circle maneuvers in calm water have been simulated for two different ship models,namely the ONR tumblehome(ONRT)test case and the KRISO(Korea Research Institute of Ship and Ocean)Container Ship(KCS)test case.Predicted ship motion is compared with measurement data to assess the accuracy of the numerical prediction using RANSE computations with different propeller models.
文摘In this paper,after the successful applications to open water propeller performance estimations,the influence of transition sensitive and modified mass transfer models tuned to account for the laminar flow in the prediction of the cavitation inception of marine propulsors is investigated from the point of view of the unsteady functioning and induced pressure pulses.The VP1304(also known as PPTC)test case,for which dedicated data were collected during several workshops,is considered first.After preliminary analyses using RANS,also Detached Eddy Simulations(DES)are included to better account for the vortex dynamics and its influence on pressure pulses.Similarly to what observed in uniform inflow,results show a better agreement with the available measurements of propeller performances and confirm the reliability of the proposed approaches for unsteady,non-cavitating,model scale propeller predictions.The overall cavitation pattern is improved too by the application of the transition sensitive correction to the mass transfer model,but the complex dynamics of bubble cavitation observed in experiments prevents quantitatively better predictions in terms of thrust/torque breakdown and induced pressure pulses levels regardless the use of RANS or DES methods.
基金supported by the Key Research and Development Program of Shaanxi Province of China(No.2018ZDCXL-GY-03-04)。
文摘Aiming to maximize the aerodynamic performance of the Distributed Electric Propulsion(DEP)aircraft,a hybrid design framework which focuses on the aerodynamic performance of the propeller/wing integration has been developed and validated numerically.Variable-fidelity modelling for propeller aerodynamics has been used to achieve computational efficiency with reasonable accuracy.By optimizing the aerodynamic loading distributions on the tractor propeller disk,the induced slipstream is redistributed into a form that is beneficial for the wing downstream,based on which the propeller blade geometry is generated through a rapid inversed design procedure.As compared with the Minimum Induced Loss(MIL)propeller at a specified thrust level,significant improvements of both the lift-to-drag ratio of the wing and the propeller/wing integrated aerodynamic efficiency is achieved,which shows great promise to deliver aerodynamic benefits for the wing within the propeller slipstream without any additional devices.