To design a propeller for ship power plant,the interaction between ship hull and propeller must be taken into account.The main concern is to apply the wake effect of ship stern on the propeller performance.In this pap...To design a propeller for ship power plant,the interaction between ship hull and propeller must be taken into account.The main concern is to apply the wake effect of ship stern on the propeller performance.In this paper,a coupled BEM(Boundary Element Method)/RANS(Renolds-Averaged Navier−Stokes)solver is used to simulate propeller behind the hull in the self-propulsion test.The motivation of this work is to develop a practical tool to design marine propulsion system without suffering long computational time.An unsteady boundary element method which is also known as panel method is chosen to estimate the propeller forces.Propeller wakes are treated using a time marching wake alignment method.Also,a RANS code coupled with VoF equation is developed to consider the ship motions and wake field effects in the problem.A coupling algorithm is developed to interchange ship wake field to the potential flow solver and propeller thrust to the RANS code.Based on the difference between hull resistance and the propeller thrust,a PI controller is developed to compute the propeller RPM in every time step.Verification of the solver is carried out using the towing tank test report of a 50 m oceanography research vessel.Wake factor and trust deduction coefficient are estimated numerically.Also,the wake rollup pattern of the propeller in open water is compared with the propeller in real wake field.展开更多
基于RSSI(Received Signal Strength Indication)位置指纹的Wi-Fi室内定位现已被大量应用于各类基于位置信息的服务中。但指纹定位的精度受到RSSI信号的剧烈波动影响,难以满足高精度位置信息服务的需求。为克服该困难,提出一种结合虚拟A...基于RSSI(Received Signal Strength Indication)位置指纹的Wi-Fi室内定位现已被大量应用于各类基于位置信息的服务中。但指纹定位的精度受到RSSI信号的剧烈波动影响,难以满足高精度位置信息服务的需求。为克服该困难,提出一种结合虚拟AP技术与高精度CNN(Convolutional Neural Network)判别模型的定位方法。该方法通过距离比定位得到虚拟AP的位置,并将该信息与RSSI融合作为数据增强CNN模型的输入,确定样本的位置。设计实验方案采集实际的用户终端RSSI数据,构建指纹定位的数据集,验证所提出的指纹定位方案的有效性。实验结果表明,在该数据集上,所提出的方法在确定区域时的准确度达到91%,并将95%的定位误差控制在2 m以内。对比现有的定位方案,所提出的方案在定位精度上有显著提升。展开更多
The 2D sandwich model serves as a potent tool in exploring the influence of surface geometry on the combustion attributes of Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB)propellant under rapid pressu...The 2D sandwich model serves as a potent tool in exploring the influence of surface geometry on the combustion attributes of Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB)propellant under rapid pressure decay.The thickness of the sandwich propellant is derived from slicing the 3D random particle packing,an approach that enables a more effective examination of the micro-flame structure.Comparative analysis of the predicted burning characteristics has been performed with experimental studies.The findings demonstrate a reasonable agreement,thereby validating the precision and soundness of the model.Based on the typical rapid depressurization environment of solid rocket motor(initial combustion pressure is 3 MPa and the maximum depressurization rate is 1000 MPa/s).A-type(a flatter surface),B-type(AP recesses from the combustion surface),and C-type(AP protrudes from the combustion surface)propellant combustion processes are numerically simulated.Upon comparison of the evolution of gas-phase flame between 0.1 and 1 ms,it is discerned that the flame strength and form created by the three sandwich models differ significantly at the beginning stage of depressurization,with the flame structures gradually becoming harmonized over time.Conclusions are drawn by comparison extinction times:the surface geometry plays a pivotal role in the combustion process,with AP protrusion favoring combustion the most.展开更多
Coating modification is an important way to enhance the reactivity of aluminum powder.In this paper,ammonium perchlorate and aluminum powder were assembled into energetic microunits by liquid deposition method.Spheric...Coating modification is an important way to enhance the reactivity of aluminum powder.In this paper,ammonium perchlorate and aluminum powder were assembled into energetic microunits by liquid deposition method.Spherical particles with AP as shell and ultrafine aluminum powder as the core(Al@AP)were gained.The micromorphology results show that the coated particles are about 5μm,and the coating layer is evenly distributed on the outer surface of aluminum powder,indicating a complete coating.The energetic microunits were implanted into the nitrate ester plasticizing adhesive system(NEPE)as solid phase fillers.The effect of filler on the rheological properties,safety,mechanical properties,thermal reaction and energy properties of the system was analyzed by comparing with the raw aluminum filler.The test results show that the rheological properties,mechanical properties and pressure index of NEPE containing system Al@AP meets the requirements of solid propellant charging.Compared with Al based propellant,the mechanical sensitivity and thermal sensitivity are decreased,the safety is better,and the explosion heat of the propellant is increased by 7.8%.The engine test shows that the specific impulse is increased by 1.2 s.Al@AP can improve the energy output and safety of NEPE propellant,and has potential application prospects in high-energy propellants.展开更多
Mathematical models of propellers were created that investigate the influence of periodic boundary conditions on predictions of a propeller's performance.Thrust and torque coefficients corresponding to different a...Mathematical models of propellers were created that investigate the influence of periodic boundary conditions on predictions of a propeller's performance.Thrust and torque coefficients corresponding to different advance coefficients of DTMB 4119, 4382, and 4384 propellers were calculated.The pressure coefficient distribution of the DTMB 4119 propeller at different sections was also physically tested.Comparisons indicated good agreement between the results of experiments and the simulation.It showed that the periodic boundary condition can be used to rationally predict the open water performance of a propeller.By analyzing the three established modes for the computation, it was shown that using the spline curve method to divide the grids can meet the calculation's demands for precision better than using the rake cutting method.展开更多
In this paper,high cis-1,4 content hydroxyl-terminated polybutadiene(cis-HTPB)with different molecular weights was prepared through the oxidative cracking process using cis-butadiene rubber as raw material.Firstly,thi...In this paper,high cis-1,4 content hydroxyl-terminated polybutadiene(cis-HTPB)with different molecular weights was prepared through the oxidative cracking process using cis-butadiene rubber as raw material.Firstly,this article comprehensively compared the differences between cis-HTPB and conventional I-HTPB in terms of molecular weight distribution,functionality,viscosity,molecular polarity,and other physicochemical properties,which provided effective data support for its subsequent application.In addition,the reaction kinetics study showed that cis-HTPB with isocyanate curing agent has high reactivity,allowing it to be rapidly cured at low temperatures,and the cured elastomers had excellent mechanical properties,with tensile strength and elongation up to 1.89 MPa and 1100%,respectively.It was also found that cis-HTPB has extremely excellent low-temperature resistance,and the glass transition temperature(T_(g))of its cured elastomer is as low as-101℃.Based on the above studies,cis-HTPB is applied as a binder in composite solid propellants for the first time to investigate its practical performance,and the results indicated that cis-HTPB-based propellants have excellent process and mechanical properties.展开更多
Numerical simulation is investigated to disclose how propeller boss cap fins (PBCF) operate utilizing Reynolds-averaged Navier-Stokes (RANS) method. In addition, exploration of the influencing mechanism of PBCF on...Numerical simulation is investigated to disclose how propeller boss cap fins (PBCF) operate utilizing Reynolds-averaged Navier-Stokes (RANS) method. In addition, exploration of the influencing mechanism of PBCF on the open water efficiency of one controllable-pitch propeller is analyzed through the open water characteristic curves, blade surface pressure distribution and hub streamline distribution. On this basis, the influence of parameters including airfoil profile, diameter, axial position of installation and circumferential installation angle on the open water efficiency of the controllable-pitch propeller is investigated. Numerical results show: for the controllable-pitch propeller, the thrust generated is at the optimum when the radius of boss cap fins is 1.5 times of propeller hub with an optimal installation position in the axial direction, and its optimal circumferential installation position is the midpoint of the extension line of the front and back ends of two adjacent propeller roots in the front of fin root. Under these optimal parameters, the gain of open water efficiency of the controllable-pitch propeller with different advance velocity coefficients is greater than 0.01, which accounts for approximately an increase of 1%-5% of open water efficiency.展开更多
AIM:To describe the subcutaneous pedicled propeller flap technique for the microscopic reconstruction of eyelid defects and evaluate its outcomes.METHODS:The clinical data of 23 patients(23 eyes)who underwent microsco...AIM:To describe the subcutaneous pedicled propeller flap technique for the microscopic reconstruction of eyelid defects and evaluate its outcomes.METHODS:The clinical data of 23 patients(23 eyes)who underwent microscopic reconstruction of eyelid defects with the subcutaneous pedicled propeller flap technique were retrospectively analyzed.All patients underwent eyelid tumor resection and one-stage microscopic reconstruction with the subcutaneous pedicled propeller flap for anterioror posterior-layer eyelid defects.The survival rate of the propeller flap,eyelid function and appearance,tumor recurrence rate,and patient satisfaction were evaluated after the surgery.RESULTS:The patients consisted of 12 men and 11 women,aged 31–82y(mean,58.9y).The longest followup time was 5y,and the shortest was 3mo.All the propeller flaps survived well.There was no significant difference in color and luster between the flap and adjacent tissues,and there was no dog ear phenomenon.No obvious scarring was observed.There were no obvious abnormalities of eyelid morphology or function,and no adverse complications such as exposure keratitis,entropion,ectropion,ptosis,and eyelid retraction.No tumor recurrence was found at the time of the last follow-up.All patients were satisfied with the surgical results.CONCLUSION:The subcutaneous pedicled propeller flap technique for the microscopic reconstruction of eyelid defects has satisfactor y outcomes in terms of eyelid function and esthetics,and merits clinical application.展开更多
The efficacy of spacecraft propulsion systems significantly depends on the choice of propellant.This study utilized laser-induced breakdown spectroscopy(LIBS)to investigate the impact of different fuel types,fuel rati...The efficacy of spacecraft propulsion systems significantly depends on the choice of propellant.This study utilized laser-induced breakdown spectroscopy(LIBS)to investigate the impact of different fuel types,fuel ratios,and laser energies on the plasma parameters of ammonium dinitramide(ADN)-based liquid propellants.Our findings suggest that 1-allyl-3-methylimidazolium dicyanamide(AMIMDCA)as a fuel choice led to higher plasma temperatures compared to methanol(CH_3OH)and hydroxyethyl hydrazine nitrate(HEHN)under the same experimental conditions.Optimization of the fuel ratio proved critical,and when the AMIMDCA ratio was 21wt.%the propellants could achieve the best propulsion performance.Increasing the incident laser energy not only enhanced the emission spectral intensity but also elevated the plasma temperature and electron density,thereby improving ablation efficiency.Notably,a combination of 100 mJ laser energy and 21wt.%AMIMDCA fuel produced a strong and stable plasma signal.This study contributes to our knowledge of pulsed laser micro-ablation in ADN-based liquid propellants,providing a useful optical diagnostic approach that can help refine the design and enhance the performance of spacecraft propulsion systems.展开更多
The transcriptional cascade and regulatory loop play crucial roles in regulating plant-specialized metabolite biosynthesis.Capsaicinoids are unique to the genus Capsicum and confer a pungent flavor to its fruits.Howev...The transcriptional cascade and regulatory loop play crucial roles in regulating plant-specialized metabolite biosynthesis.Capsaicinoids are unique to the genus Capsicum and confer a pungent flavor to its fruits.However,the transcriptional regulation of capsaicinoid biosynthesis remains largely unknown.In this study,two AP2/ERF transcription factors(TFs),CaERF102 and CaERF111,were characterized for their role in the capsaicinoid biosynthesis process.Expression analysis of two ERFs and capsaicinoid biosynthetic genes(CBGs)suggested that they were associated with capsaicinoid biosynthesis.Both ERFs encode nuclear-localized proteins and function as transcriptional activators through their C-terminal activation motifs.The two ERF TFs participated in capsaicinoid biosynthesis by directly activating the promoters of key CBGs,and this activation was significantly enhanced when CaMYC2 was co-expressed.Moreover,CaERF102 and CaERF111 were found to interact with CaMYC2.This study helps elucidate the AP2/ERF TF regulatory network that governs capsaicinoid biosynthesis in Capsicum species.展开更多
文摘To design a propeller for ship power plant,the interaction between ship hull and propeller must be taken into account.The main concern is to apply the wake effect of ship stern on the propeller performance.In this paper,a coupled BEM(Boundary Element Method)/RANS(Renolds-Averaged Navier−Stokes)solver is used to simulate propeller behind the hull in the self-propulsion test.The motivation of this work is to develop a practical tool to design marine propulsion system without suffering long computational time.An unsteady boundary element method which is also known as panel method is chosen to estimate the propeller forces.Propeller wakes are treated using a time marching wake alignment method.Also,a RANS code coupled with VoF equation is developed to consider the ship motions and wake field effects in the problem.A coupling algorithm is developed to interchange ship wake field to the potential flow solver and propeller thrust to the RANS code.Based on the difference between hull resistance and the propeller thrust,a PI controller is developed to compute the propeller RPM in every time step.Verification of the solver is carried out using the towing tank test report of a 50 m oceanography research vessel.Wake factor and trust deduction coefficient are estimated numerically.Also,the wake rollup pattern of the propeller in open water is compared with the propeller in real wake field.
基金supported by the National Natural Science Foundation of China(Grant No.51176076)。
文摘The 2D sandwich model serves as a potent tool in exploring the influence of surface geometry on the combustion attributes of Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB)propellant under rapid pressure decay.The thickness of the sandwich propellant is derived from slicing the 3D random particle packing,an approach that enables a more effective examination of the micro-flame structure.Comparative analysis of the predicted burning characteristics has been performed with experimental studies.The findings demonstrate a reasonable agreement,thereby validating the precision and soundness of the model.Based on the typical rapid depressurization environment of solid rocket motor(initial combustion pressure is 3 MPa and the maximum depressurization rate is 1000 MPa/s).A-type(a flatter surface),B-type(AP recesses from the combustion surface),and C-type(AP protrudes from the combustion surface)propellant combustion processes are numerically simulated.Upon comparison of the evolution of gas-phase flame between 0.1 and 1 ms,it is discerned that the flame strength and form created by the three sandwich models differ significantly at the beginning stage of depressurization,with the flame structures gradually becoming harmonized over time.Conclusions are drawn by comparison extinction times:the surface geometry plays a pivotal role in the combustion process,with AP protrusion favoring combustion the most.
基金supported by Natural Science Foundation (Grant No.21975024)Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No.2021BS05014)。
文摘Coating modification is an important way to enhance the reactivity of aluminum powder.In this paper,ammonium perchlorate and aluminum powder were assembled into energetic microunits by liquid deposition method.Spherical particles with AP as shell and ultrafine aluminum powder as the core(Al@AP)were gained.The micromorphology results show that the coated particles are about 5μm,and the coating layer is evenly distributed on the outer surface of aluminum powder,indicating a complete coating.The energetic microunits were implanted into the nitrate ester plasticizing adhesive system(NEPE)as solid phase fillers.The effect of filler on the rheological properties,safety,mechanical properties,thermal reaction and energy properties of the system was analyzed by comparing with the raw aluminum filler.The test results show that the rheological properties,mechanical properties and pressure index of NEPE containing system Al@AP meets the requirements of solid propellant charging.Compared with Al based propellant,the mechanical sensitivity and thermal sensitivity are decreased,the safety is better,and the explosion heat of the propellant is increased by 7.8%.The engine test shows that the specific impulse is increased by 1.2 s.Al@AP can improve the energy output and safety of NEPE propellant,and has potential application prospects in high-energy propellants.
基金Supported by the National Natural Science Foundation of China under Grant No.10702016
文摘Mathematical models of propellers were created that investigate the influence of periodic boundary conditions on predictions of a propeller's performance.Thrust and torque coefficients corresponding to different advance coefficients of DTMB 4119, 4382, and 4384 propellers were calculated.The pressure coefficient distribution of the DTMB 4119 propeller at different sections was also physically tested.Comparisons indicated good agreement between the results of experiments and the simulation.It showed that the periodic boundary condition can be used to rationally predict the open water performance of a propeller.By analyzing the three established modes for the computation, it was shown that using the spline curve method to divide the grids can meet the calculation's demands for precision better than using the rake cutting method.
基金the support from the Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory(Grant No.STACPL120221B03)the National Natural Science Foundation of China(Grant No.22175059).
文摘In this paper,high cis-1,4 content hydroxyl-terminated polybutadiene(cis-HTPB)with different molecular weights was prepared through the oxidative cracking process using cis-butadiene rubber as raw material.Firstly,this article comprehensively compared the differences between cis-HTPB and conventional I-HTPB in terms of molecular weight distribution,functionality,viscosity,molecular polarity,and other physicochemical properties,which provided effective data support for its subsequent application.In addition,the reaction kinetics study showed that cis-HTPB with isocyanate curing agent has high reactivity,allowing it to be rapidly cured at low temperatures,and the cured elastomers had excellent mechanical properties,with tensile strength and elongation up to 1.89 MPa and 1100%,respectively.It was also found that cis-HTPB has extremely excellent low-temperature resistance,and the glass transition temperature(T_(g))of its cured elastomer is as low as-101℃.Based on the above studies,cis-HTPB is applied as a binder in composite solid propellants for the first time to investigate its practical performance,and the results indicated that cis-HTPB-based propellants have excellent process and mechanical properties.
基金Supported by the National Natural Science Foundation of China under Grant No.51079157
文摘Numerical simulation is investigated to disclose how propeller boss cap fins (PBCF) operate utilizing Reynolds-averaged Navier-Stokes (RANS) method. In addition, exploration of the influencing mechanism of PBCF on the open water efficiency of one controllable-pitch propeller is analyzed through the open water characteristic curves, blade surface pressure distribution and hub streamline distribution. On this basis, the influence of parameters including airfoil profile, diameter, axial position of installation and circumferential installation angle on the open water efficiency of the controllable-pitch propeller is investigated. Numerical results show: for the controllable-pitch propeller, the thrust generated is at the optimum when the radius of boss cap fins is 1.5 times of propeller hub with an optimal installation position in the axial direction, and its optimal circumferential installation position is the midpoint of the extension line of the front and back ends of two adjacent propeller roots in the front of fin root. Under these optimal parameters, the gain of open water efficiency of the controllable-pitch propeller with different advance velocity coefficients is greater than 0.01, which accounts for approximately an increase of 1%-5% of open water efficiency.
基金Supported by the Young Talent Program of Gusu Health Project(No.GSWS2020014)。
文摘AIM:To describe the subcutaneous pedicled propeller flap technique for the microscopic reconstruction of eyelid defects and evaluate its outcomes.METHODS:The clinical data of 23 patients(23 eyes)who underwent microscopic reconstruction of eyelid defects with the subcutaneous pedicled propeller flap technique were retrospectively analyzed.All patients underwent eyelid tumor resection and one-stage microscopic reconstruction with the subcutaneous pedicled propeller flap for anterioror posterior-layer eyelid defects.The survival rate of the propeller flap,eyelid function and appearance,tumor recurrence rate,and patient satisfaction were evaluated after the surgery.RESULTS:The patients consisted of 12 men and 11 women,aged 31–82y(mean,58.9y).The longest followup time was 5y,and the shortest was 3mo.All the propeller flaps survived well.There was no significant difference in color and luster between the flap and adjacent tissues,and there was no dog ear phenomenon.No obvious scarring was observed.There were no obvious abnormalities of eyelid morphology or function,and no adverse complications such as exposure keratitis,entropion,ectropion,ptosis,and eyelid retraction.No tumor recurrence was found at the time of the last follow-up.All patients were satisfied with the surgical results.CONCLUSION:The subcutaneous pedicled propeller flap technique for the microscopic reconstruction of eyelid defects has satisfactor y outcomes in terms of eyelid function and esthetics,and merits clinical application.
文摘The efficacy of spacecraft propulsion systems significantly depends on the choice of propellant.This study utilized laser-induced breakdown spectroscopy(LIBS)to investigate the impact of different fuel types,fuel ratios,and laser energies on the plasma parameters of ammonium dinitramide(ADN)-based liquid propellants.Our findings suggest that 1-allyl-3-methylimidazolium dicyanamide(AMIMDCA)as a fuel choice led to higher plasma temperatures compared to methanol(CH_3OH)and hydroxyethyl hydrazine nitrate(HEHN)under the same experimental conditions.Optimization of the fuel ratio proved critical,and when the AMIMDCA ratio was 21wt.%the propellants could achieve the best propulsion performance.Increasing the incident laser energy not only enhanced the emission spectral intensity but also elevated the plasma temperature and electron density,thereby improving ablation efficiency.Notably,a combination of 100 mJ laser energy and 21wt.%AMIMDCA fuel produced a strong and stable plasma signal.This study contributes to our knowledge of pulsed laser micro-ablation in ADN-based liquid propellants,providing a useful optical diagnostic approach that can help refine the design and enhance the performance of spacecraft propulsion systems.
基金funded by the National Natural Science Foundation of China(Grant Nos.32202502,U21A20230,32070331,32102380 and 32072580)National Key Research and Development Program(Grant No.2018YFD1000800)+3 种基金the Key-Area Research and Development Program of Guangdong Province(Grant No.2022B0202080001)the Special Fund for Seed Industry of Guangdong Province Rural Revitalization Strategy(Grant No.2022-NPY00-024)Tibet Autonomous Region of Lhasa City Science and Technology Project(Grant No.LSKJ202310)the Science and Technology Project of Bijie City(Grant No.BKK2022-3)。
文摘The transcriptional cascade and regulatory loop play crucial roles in regulating plant-specialized metabolite biosynthesis.Capsaicinoids are unique to the genus Capsicum and confer a pungent flavor to its fruits.However,the transcriptional regulation of capsaicinoid biosynthesis remains largely unknown.In this study,two AP2/ERF transcription factors(TFs),CaERF102 and CaERF111,were characterized for their role in the capsaicinoid biosynthesis process.Expression analysis of two ERFs and capsaicinoid biosynthetic genes(CBGs)suggested that they were associated with capsaicinoid biosynthesis.Both ERFs encode nuclear-localized proteins and function as transcriptional activators through their C-terminal activation motifs.The two ERF TFs participated in capsaicinoid biosynthesis by directly activating the promoters of key CBGs,and this activation was significantly enhanced when CaMYC2 was co-expressed.Moreover,CaERF102 and CaERF111 were found to interact with CaMYC2.This study helps elucidate the AP2/ERF TF regulatory network that governs capsaicinoid biosynthesis in Capsicum species.