The reduced-order finite element method (FEM) based on a proper orthogo- nal decomposition (POD) theory is applied to the time fractional Tricomi-type equation. The present method is an improvement on the general ...The reduced-order finite element method (FEM) based on a proper orthogo- nal decomposition (POD) theory is applied to the time fractional Tricomi-type equation. The present method is an improvement on the general FEM. It can significantly save mem- ory space and effectively relieve the computing load due to its reconstruction of POD basis functions. Furthermore, the reduced-order finite element (FE) scheme is shown to be un- conditionally stable, and error estimation is derived in detail. Two numerical examples are presented to show the feasibility and effectiveness of the method for time fractional differential equations (FDEs).展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11361035 and 11301258)the Natural Science Foundation of Inner Mongolia(Nos.2012MS0106 and 2012MS0108)
文摘The reduced-order finite element method (FEM) based on a proper orthogo- nal decomposition (POD) theory is applied to the time fractional Tricomi-type equation. The present method is an improvement on the general FEM. It can significantly save mem- ory space and effectively relieve the computing load due to its reconstruction of POD basis functions. Furthermore, the reduced-order finite element (FE) scheme is shown to be un- conditionally stable, and error estimation is derived in detail. Two numerical examples are presented to show the feasibility and effectiveness of the method for time fractional differential equations (FDEs).