There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement an...There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering.展开更多
A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pres...A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pressure on passenger safety and operation.First,the passenger flow sequence models in the study are broken down using VMD for noise reduction.The objective environment features are then added to the characteristic factors that affect the passenger flow.The target station serves as an additional spatial feature and is mined concurrently using the KNN algorithm.It is shown that the hybrid model VMD-CLSMT has a higher prediction accuracy,by setting BP,CNN,and LSTM reference experiments.All models’second order prediction effects are superior to their first order effects,showing that the residual network can significantly raise model prediction accuracy.Additionally,it confirms the efficacy of supplementary and objective environmental features.展开更多
Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind s...Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind speed time series data was processed using Variational Mode Decomposition (VMD) to obtain multiple frequency components. Then, each individual frequency component was channeled into a combined prediction framework consisting of BP neural network (BPNN), Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) after the execution of differential and normalization operations. Thereafter, the predictive outputs for each component underwent integration through a fully-connected neural architecture for data fusion processing, resulting in the final prediction. The VMD decomposition technique was introduced in a generalized CNN-LSTM prediction model;a BPNN model was utilized to predict high-frequency components obtained from VMD, and incorporated a fully connected neural network for data fusion of individual component predictions. Experimental results demonstrated that the proposed improved VMD-BP-CNN-LSTM model outperformed other combined prediction models in terms of prediction accuracy, providing a solid foundation for optimizing the safe operation of wind farms.展开更多
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl...Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.展开更多
Deep learning has reached many successes in Video Processing.Video has become a growing important part of our daily digital interactions.The advancement of better resolution content and the large volume offers serious...Deep learning has reached many successes in Video Processing.Video has become a growing important part of our daily digital interactions.The advancement of better resolution content and the large volume offers serious challenges to the goal of receiving,distributing,compressing and revealing highquality video content.In this paper we propose a novel Effective and Efficient video compression by the Deep Learning framework based on the flask,which creatively combines the Deep Learning Techniques on Convolutional Neural Networks(CNN)and Generative Adversarial Networks(GAN).The video compression method involves the layers are divided into different groups for data processing,using CNN to remove the duplicate frames,repeating the single image instead of the duplicate images by recognizing and detecting minute changes using GAN and recorded with Long Short-Term Memory(LSTM).Instead of the complete image,the small changes generated using GAN are substituted,which helps with frame-level compression.Pixel wise comparison is performed using K-nearest Neighbours(KNN)over the frame,clustered with K-means and Singular Value Decomposition(SVD)is applied for every frame in the video for all three colour channels[Red,Green,Blue]to decrease the dimension of the utility matrix[R,G,B]by extracting its latent factors.Video frames are packed with parameters with the aid of a codec and converted to video format and the results are compared with the original video.Repeated experiments on several videos with different sizes,duration,Frames per second(FPS),and quality results demonstrated a significant resampling rate.On normal,the outcome delivered had around a 10%deviation in quality and over half in size when contrasted,and the original video.展开更多
Water quality prediction is vital for solving water pollution and protecting the water environment.In terms of the characteristics of nonlinearity,instability,and randomness of water quality parameters,a short-term wa...Water quality prediction is vital for solving water pollution and protecting the water environment.In terms of the characteristics of nonlinearity,instability,and randomness of water quality parameters,a short-term water quality prediction model was proposed based on variational mode decomposition(VMD)and improved grasshopper optimization algorithm(IGOA),so as to optimize long short-term memory neural network(LSTM).First,VMD was adopted to decompose the water quality data into a series of relatively stable components,with the aim to reduce the instability of the original data and increase the predictability,then each component was input into the iGOA-LSTM model for prediction.Finally,each component was added to obtain the predicted values.In this study,the monitoring data from Dayangzhou Station and Shengmi Station of the Ganjiang River was used for training and prediction.The experimental results showed that the prediction accuracy of the VMDIGOA-LSTM model proposed was higher than that of the integrated model of Ensemble Empirical Mode Decomposition(EEMD),the integrated model of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN),Nonlinear Autoregressive Network with Exogenous Inputs(NARX),Recurrent Neural Network(RNN),as well as other models,showing better performance in short-term prediction.The current study will provide a reliable solution for water quality prediction studies in other areas.展开更多
文摘There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering.
基金the Major Projects of the National Social Science Fund in China(21&ZD127).
文摘A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pressure on passenger safety and operation.First,the passenger flow sequence models in the study are broken down using VMD for noise reduction.The objective environment features are then added to the characteristic factors that affect the passenger flow.The target station serves as an additional spatial feature and is mined concurrently using the KNN algorithm.It is shown that the hybrid model VMD-CLSMT has a higher prediction accuracy,by setting BP,CNN,and LSTM reference experiments.All models’second order prediction effects are superior to their first order effects,showing that the residual network can significantly raise model prediction accuracy.Additionally,it confirms the efficacy of supplementary and objective environmental features.
文摘Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind speed time series data was processed using Variational Mode Decomposition (VMD) to obtain multiple frequency components. Then, each individual frequency component was channeled into a combined prediction framework consisting of BP neural network (BPNN), Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) after the execution of differential and normalization operations. Thereafter, the predictive outputs for each component underwent integration through a fully-connected neural architecture for data fusion processing, resulting in the final prediction. The VMD decomposition technique was introduced in a generalized CNN-LSTM prediction model;a BPNN model was utilized to predict high-frequency components obtained from VMD, and incorporated a fully connected neural network for data fusion of individual component predictions. Experimental results demonstrated that the proposed improved VMD-BP-CNN-LSTM model outperformed other combined prediction models in terms of prediction accuracy, providing a solid foundation for optimizing the safe operation of wind farms.
文摘Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.
文摘Deep learning has reached many successes in Video Processing.Video has become a growing important part of our daily digital interactions.The advancement of better resolution content and the large volume offers serious challenges to the goal of receiving,distributing,compressing and revealing highquality video content.In this paper we propose a novel Effective and Efficient video compression by the Deep Learning framework based on the flask,which creatively combines the Deep Learning Techniques on Convolutional Neural Networks(CNN)and Generative Adversarial Networks(GAN).The video compression method involves the layers are divided into different groups for data processing,using CNN to remove the duplicate frames,repeating the single image instead of the duplicate images by recognizing and detecting minute changes using GAN and recorded with Long Short-Term Memory(LSTM).Instead of the complete image,the small changes generated using GAN are substituted,which helps with frame-level compression.Pixel wise comparison is performed using K-nearest Neighbours(KNN)over the frame,clustered with K-means and Singular Value Decomposition(SVD)is applied for every frame in the video for all three colour channels[Red,Green,Blue]to decrease the dimension of the utility matrix[R,G,B]by extracting its latent factors.Video frames are packed with parameters with the aid of a codec and converted to video format and the results are compared with the original video.Repeated experiments on several videos with different sizes,duration,Frames per second(FPS),and quality results demonstrated a significant resampling rate.On normal,the outcome delivered had around a 10%deviation in quality and over half in size when contrasted,and the original video.
基金the Zhejiang Provincial Natural Science Foundation of China(No.LY23H180001)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,the China Institute of Water Resources and Hydropower Research(No.IWHR-SKL-201905)the National Natural Science Foundation of China(No.11701363).
文摘Water quality prediction is vital for solving water pollution and protecting the water environment.In terms of the characteristics of nonlinearity,instability,and randomness of water quality parameters,a short-term water quality prediction model was proposed based on variational mode decomposition(VMD)and improved grasshopper optimization algorithm(IGOA),so as to optimize long short-term memory neural network(LSTM).First,VMD was adopted to decompose the water quality data into a series of relatively stable components,with the aim to reduce the instability of the original data and increase the predictability,then each component was input into the iGOA-LSTM model for prediction.Finally,each component was added to obtain the predicted values.In this study,the monitoring data from Dayangzhou Station and Shengmi Station of the Ganjiang River was used for training and prediction.The experimental results showed that the prediction accuracy of the VMDIGOA-LSTM model proposed was higher than that of the integrated model of Ensemble Empirical Mode Decomposition(EEMD),the integrated model of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN),Nonlinear Autoregressive Network with Exogenous Inputs(NARX),Recurrent Neural Network(RNN),as well as other models,showing better performance in short-term prediction.The current study will provide a reliable solution for water quality prediction studies in other areas.