期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Landslide displacement prediction based on optimized empirical mode decomposition and deep bidirectional long short-term memory network 被引量:3
1
作者 ZHANG Ming-yue HAN Yang +1 位作者 YANG Ping WANG Cong-ling 《Journal of Mountain Science》 SCIE CSCD 2023年第3期637-656,共20页
There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement an... There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering. 展开更多
关键词 Landslide displacement Empirical mode decomposition Soft screening stop criteria Deep bidirectional long short-term memory neural network Xintan landslide Bazimen landslide
下载PDF
Hybrid Model for Short-Term Passenger Flow Prediction in Rail Transit
2
作者 Yinghua Song Hairong Lyu Wei Zhang 《Journal on Big Data》 2023年第1期19-40,共22页
A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pres... A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pressure on passenger safety and operation.First,the passenger flow sequence models in the study are broken down using VMD for noise reduction.The objective environment features are then added to the characteristic factors that affect the passenger flow.The target station serves as an additional spatial feature and is mined concurrently using the KNN algorithm.It is shown that the hybrid model VMD-CLSMT has a higher prediction accuracy,by setting BP,CNN,and LSTM reference experiments.All models’second order prediction effects are superior to their first order effects,showing that the residual network can significantly raise model prediction accuracy.Additionally,it confirms the efficacy of supplementary and objective environmental features. 展开更多
关键词 short-term passenger flow forecast variational mode decomposition long and short-term memory convolutional neural network residual network
下载PDF
采用本征正交分解和长短期记忆网络模型的离心泵流场预测
3
作者 肖颖 肖翔域 +2 位作者 段壮 孙中国 席光 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第12期119-130,共12页
针对流体机械领域中瞬态流场预测的复杂性以及现有本征正交分解-径向基函数(POD-RBF)模型在时间依赖性预测方面的局限性,引入本征正交分解-长短期记忆网络(POD-LSTM)模型,以提升预测的准确性和效率。通过计算流体动力学(CFD)对二维圆柱... 针对流体机械领域中瞬态流场预测的复杂性以及现有本征正交分解-径向基函数(POD-RBF)模型在时间依赖性预测方面的局限性,引入本征正交分解-长短期记忆网络(POD-LSTM)模型,以提升预测的准确性和效率。通过计算流体动力学(CFD)对二维圆柱绕流进行分析,比较了POD-RBF与POD-LSTM模型在瞬态流场预测性能上的差异。进一步将POD-LSTM模型应用于离心泵瞬态流场预测,详细分析了离心泵叶轮、蜗壳及密封装置的预测效果。计算结果表明:相较于POD-RBF模型,POD-LSTM模型在预测距离训练集较远时刻的流场时性能较优,预测精度较高,压力场的平均相对偏差仅为0.96%;与传统CFD方法相比,POD-LSTM模型在预测离心泵压力场和y方向速度场时的平均相对偏差分别为0.06%、6.07%,计算时间仅为传统CFD方法的0.01%,显著降低了计算成本;POD-LSTM模型的预测结果与CFD模拟结果的一致度较高,验证了其在离心泵流场预测中的精准性。研究可为流体机械领域数字孪生体的构建提供新的技术路径。 展开更多
关键词 本征正交分解和长短期记忆网络 离心泵 瞬态流场预测 数字孪生
下载PDF
基于POD-LSTM的污水处理过程模型预测控制
4
作者 马会彪 曾静 《电子测量技术》 北大核心 2024年第13期81-88,共8页
为了解决模型预测控制在污水处理等大型非线性系统中求解非线性优化问题时计算成本较高的问题,本文提出了一种应用于污水处理基准的降阶神经网络模型预测控制算法。首先,针对污水处理中的大规模非线性和强耦合性系统,采用本征正交分解... 为了解决模型预测控制在污水处理等大型非线性系统中求解非线性优化问题时计算成本较高的问题,本文提出了一种应用于污水处理基准的降阶神经网络模型预测控制算法。首先,针对污水处理中的大规模非线性和强耦合性系统,采用本征正交分解方法构建出降阶过程模型,降低非线性系统的复杂度。然后,利用长短期记忆网络来近似降阶之后的系统,从而解决降阶后的系统难以用显式表达的问题。最后,在此降阶系统的基础上设计模型预测控制器,实现对污水处理的高效控制。实验结果表明,在保证较好控制效果的同时,所提出的降阶神经网络模型预测控制策略相较于污水处理第一原理模型的模型预测控制策略,计算时间大幅度减少。 展开更多
关键词 模型预测控制 污水处理 本征正交分解 长短期记忆网络
下载PDF
Wind Speed Prediction Based on Improved VMD-BP-CNN-LSTM Model
5
作者 Chaoming Shu Bin Qin Xin Wang 《Journal of Power and Energy Engineering》 2024年第1期29-43,共15页
Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind s... Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind speed time series data was processed using Variational Mode Decomposition (VMD) to obtain multiple frequency components. Then, each individual frequency component was channeled into a combined prediction framework consisting of BP neural network (BPNN), Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) after the execution of differential and normalization operations. Thereafter, the predictive outputs for each component underwent integration through a fully-connected neural architecture for data fusion processing, resulting in the final prediction. The VMD decomposition technique was introduced in a generalized CNN-LSTM prediction model;a BPNN model was utilized to predict high-frequency components obtained from VMD, and incorporated a fully connected neural network for data fusion of individual component predictions. Experimental results demonstrated that the proposed improved VMD-BP-CNN-LSTM model outperformed other combined prediction models in terms of prediction accuracy, providing a solid foundation for optimizing the safe operation of wind farms. 展开更多
关键词 Wind Speed Forecast long short-term memory network BP Neural network Variational Mode decomposition Data Fusion
下载PDF
大跨平屋盖风荷载特性及风压预测研究 被引量:6
6
作者 陈伏彬 唐宾芳 +1 位作者 蔡虬瑞 李秋胜 《振动与冲击》 EI CSCD 北大核心 2021年第3期226-232,共7页
在大气边界层风洞中开展了大跨平屋盖结构刚性模型试验,获得了屋盖表面测点的风压时程,分析了典型风向下屋盖表面平均风压与脉动风压特性。结合本征正交分解技术(POD)与BP神经网络法,提出了一种可用于大跨结构进行空间插值的机器学习法... 在大气边界层风洞中开展了大跨平屋盖结构刚性模型试验,获得了屋盖表面测点的风压时程,分析了典型风向下屋盖表面平均风压与脉动风压特性。结合本征正交分解技术(POD)与BP神经网络法,提出了一种可用于大跨结构进行空间插值的机器学习法—POD-BPNN法,实现了对风压的高效预测。预测的平均风压系数、脉动风压系数、脉动风压的时域与频域特性均与风洞试验值相吻合。表明运用POD-BPNN方法预测大跨结构表面风压是可行的。 展开更多
关键词 大跨平屋盖 平均风压 脉动风压 本征正交分解法 BP神经网络
下载PDF
Deep Learning Applied to Computational Mechanics:A Comprehensive Review,State of the Art,and the Classics 被引量:1
7
作者 Loc Vu-Quoc Alexander Humer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1069-1343,共275页
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl... Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example. 展开更多
关键词 Deep learning breakthroughs network architectures backpropagation stochastic optimization methods from classic to modern recurrent neural networks long short-term memory gated recurrent unit attention transformer kernel machines Gaussian processes libraries Physics-Informed Neural networks state-of-the-art history limitations challenges Applications to computational mechanics Finite-element matrix integration improved Gauss quadrature Multiscale geomechanics fluid-filled porous media Fluid mechanics turbulence proper orthogonal decomposition Nonlinear-manifold model-order reduction autoencoder hyper-reduction using gappy data control of large deformable beam
下载PDF
Effective and Efficient Video Compression by the Deep Learning Techniques
8
作者 Karthick Panneerselvam K.Mahesh +1 位作者 V.L.Helen Josephine A.Ranjith Kumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1047-1061,共15页
Deep learning has reached many successes in Video Processing.Video has become a growing important part of our daily digital interactions.The advancement of better resolution content and the large volume offers serious... Deep learning has reached many successes in Video Processing.Video has become a growing important part of our daily digital interactions.The advancement of better resolution content and the large volume offers serious challenges to the goal of receiving,distributing,compressing and revealing highquality video content.In this paper we propose a novel Effective and Efficient video compression by the Deep Learning framework based on the flask,which creatively combines the Deep Learning Techniques on Convolutional Neural Networks(CNN)and Generative Adversarial Networks(GAN).The video compression method involves the layers are divided into different groups for data processing,using CNN to remove the duplicate frames,repeating the single image instead of the duplicate images by recognizing and detecting minute changes using GAN and recorded with Long Short-Term Memory(LSTM).Instead of the complete image,the small changes generated using GAN are substituted,which helps with frame-level compression.Pixel wise comparison is performed using K-nearest Neighbours(KNN)over the frame,clustered with K-means and Singular Value Decomposition(SVD)is applied for every frame in the video for all three colour channels[Red,Green,Blue]to decrease the dimension of the utility matrix[R,G,B]by extracting its latent factors.Video frames are packed with parameters with the aid of a codec and converted to video format and the results are compared with the original video.Repeated experiments on several videos with different sizes,duration,Frames per second(FPS),and quality results demonstrated a significant resampling rate.On normal,the outcome delivered had around a 10%deviation in quality and over half in size when contrasted,and the original video. 展开更多
关键词 Convolutional neural networks(CNN) generative adversarial network(GAN) singular value decomposition(SVD) K-nearest neighbours(KNN) stochastic gradient descent(SGD) long short-term memory(LSTM)
下载PDF
基于混合驱动降阶模型的中子注量率快速预测方法研究
9
作者 赵梓炎 向钊才 赵鹏程 《核动力工程》 EI CAS CSCD 北大核心 2024年第4期1-8,共8页
反应堆参数发生扰动后的瞬间,中子注量率和反应堆功率的准确预测对反应堆安全运行至关重要,而现有的本征正交分解(POD)与Galerkin投影相结合的方法存在累积误差而导致精度不高的问题。使用隐式差分法得到一维中子时空扩散的精确解,并作... 反应堆参数发生扰动后的瞬间,中子注量率和反应堆功率的准确预测对反应堆安全运行至关重要,而现有的本征正交分解(POD)与Galerkin投影相结合的方法存在累积误差而导致精度不高的问题。使用隐式差分法得到一维中子时空扩散的精确解,并作为基准数据,引入2个长短期记忆(LSTM)神经网络项,用于降低POD的累积误差和截断误差,实现物理驱动和数据驱动的混合驱动模型的构建。结果表明,添加神经网络修正项后,对中子注量率、总功率和各阶模态系数预测的均方根误差(RMSE)均降低了1~2个数量级,添加神经网络扩展项后,在预测相同阶数情况下计算时间显著减小,基于2阶和3阶扩展到6阶的改进模型相较于原始6阶模型分别提速了13%和7.6%。混合驱动模型可以很好得改善POD快速预测精度,结果有一定的参考价值。 展开更多
关键词 本征正交分解(POD) Galerkin投影 长短期记忆(LSTM)神经网络 降阶模型 中子注量率预测
原文传递
基于长短期记忆神经网络的涡激振动快速预报 被引量:1
10
作者 肖裕程 李亮 徐铭泽 《中国造船》 EI CSCD 北大核心 2023年第5期130-145,共16页
基于本征正交分解(POD)方法和长短期记忆(LSTM)神经网络,建立圆柱双自由度VIV短期高精度快速预报模型,即POD-LSTM模型。模型训练所需数据通过浸没边界格子玻尔兹曼方法(IB-LBM)生成。基于POD降阶方法建立编码层和解码层,将流场快照集转... 基于本征正交分解(POD)方法和长短期记忆(LSTM)神经网络,建立圆柱双自由度VIV短期高精度快速预报模型,即POD-LSTM模型。模型训练所需数据通过浸没边界格子玻尔兹曼方法(IB-LBM)生成。基于POD降阶方法建立编码层和解码层,将流场快照集转化为一系列模态系数的时间序列,将其作为LSTM网络的输入,并将预报所得模态系数重构为流场快照。通过LSTM及滑动时间窗口策略实现未来任意时刻信息的预报。在Re=150、U_(r)=3,5,6,8工况下,基于过去50个时刻的历史数据,对未来300个时刻的流场速度分布及圆柱横流向位移进行预报。速度场的量纲一预报误差和均方根误差、圆柱横流向位移的均方根误差均维持在较低的水平,证明了POD-LSTM模型具备较高的预报精度。此外,在相同条件下,POD-LSTM模型计算耗时仅为IB-LBM的5.27%,在预报效率方面有显著优势。 展开更多
关键词 深度学习 长短期记忆 涡激振动 本征正交分解
原文传递
A novel hybrid model for water quality prediction based on VMD and IGOA optimized for LSTM 被引量:3
11
作者 Zhaocai Wang Qingyu Wang Tunhua Wu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第7期133-149,共17页
Water quality prediction is vital for solving water pollution and protecting the water environment.In terms of the characteristics of nonlinearity,instability,and randomness of water quality parameters,a short-term wa... Water quality prediction is vital for solving water pollution and protecting the water environment.In terms of the characteristics of nonlinearity,instability,and randomness of water quality parameters,a short-term water quality prediction model was proposed based on variational mode decomposition(VMD)and improved grasshopper optimization algorithm(IGOA),so as to optimize long short-term memory neural network(LSTM).First,VMD was adopted to decompose the water quality data into a series of relatively stable components,with the aim to reduce the instability of the original data and increase the predictability,then each component was input into the iGOA-LSTM model for prediction.Finally,each component was added to obtain the predicted values.In this study,the monitoring data from Dayangzhou Station and Shengmi Station of the Ganjiang River was used for training and prediction.The experimental results showed that the prediction accuracy of the VMDIGOA-LSTM model proposed was higher than that of the integrated model of Ensemble Empirical Mode Decomposition(EEMD),the integrated model of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN),Nonlinear Autoregressive Network with Exogenous Inputs(NARX),Recurrent Neural Network(RNN),as well as other models,showing better performance in short-term prediction.The current study will provide a reliable solution for water quality prediction studies in other areas. 展开更多
关键词 Waterquality prediction Grasshopper optimization algorithm Variational mode decomposition long short-term memory neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部