We developed a mathematical optimization model coupling chemical compositions and high-temperature characteristics of sintering materials, targeting the best quality and lowest cost. The simplex algorithm was adopted ...We developed a mathematical optimization model coupling chemical compositions and high-temperature characteristics of sintering materials, targeting the best quality and lowest cost. The simplex algorithm was adopted to solve this model. Four kinds of imported iron ores, two kinds of Chinese iron ore concentrates, and two kinds of fluxes were selected to verify both the model and the algorithm. The results confirmed the possibility of considering both chemical compositions and high-temperature characteristics of iron ores in the optimization model. This model provides a technical roadmap to obtain a precise mathematical correlation between the lowest cost and the grade of iron in sinters based on the condition of given raw materials, which can provide a reference to adjust the grade of iron in the sintering process for enterprise.展开更多
The experimental prediction of the mechanical properties of minerals remains difficult because of their small particle size (typically < 2 micrometers). This work aims at examining, the effect of an applied mechani...The experimental prediction of the mechanical properties of minerals remains difficult because of their small particle size (typically < 2 micrometers). This work aims at examining, the effect of an applied mechanical constraint on the hydration behaviour in the case of Na rich-montmorillonite and its relation with the elastic properties. The mechanical constraint is created, at the laboratory scale, by applying a monoaxial pressure for unstressed host material (i.e. Na rich montmorillonite). The structural analysis before and after stress is achieved using an XRD profile modeling approach. This investigation allowed us to determine several structural parameters related to the nature, abundance, size, position and organization of exchangeable cation and water molecule in the interlamellar space along the c* axis. In order to evaluate the affected elastic properties, the GULP code have been used to study the structure and the interlamellar organization. Indeed, the bulk modulus and elastic constants of montmorilonite have been calculated from first principles within density functional theory (DFT). The obtained Young’s modulus for Na-montmorillonite interlayer varies from 5 GPa to 16 GPa. According to the interlamellar space configuration the calculated elastic constant tensors indicate that the a direction is slightly more flexible than the b direction. The calculated elastic constant tensor along c is much lower than the constants calculated along a and b.展开更多
Conventional intermetallics are strong but brit-tle.However,multi-principal element intermetallics,also termed as high-entropy intermetallics(HEIs)in the recent high-entropy alloy literature,are strong but malleable,s...Conventional intermetallics are strong but brit-tle.However,multi-principal element intermetallics,also termed as high-entropy intermetallics(HEIs)in the recent high-entropy alloy literature,are strong but malleable,some of which even show appreciable ductility and fracture toughness at room temperature.In this article,we provide a focused review on the recent researches on HEIs,from the fundamentals,such as the concept of HEIs,the formation rules to the structural and functional properties of HEIs.The results hitherto reported clearly show that the HEIs with distinct properties could be a promising material for future structural and functional applications.展开更多
基金financially supported by the National Natural Science Foundation of China and Baosteel Group Co., Ltd., of Shanghai (U1260202)the Postdoctoral Science Foundation of China (2012T50045)
文摘We developed a mathematical optimization model coupling chemical compositions and high-temperature characteristics of sintering materials, targeting the best quality and lowest cost. The simplex algorithm was adopted to solve this model. Four kinds of imported iron ores, two kinds of Chinese iron ore concentrates, and two kinds of fluxes were selected to verify both the model and the algorithm. The results confirmed the possibility of considering both chemical compositions and high-temperature characteristics of iron ores in the optimization model. This model provides a technical roadmap to obtain a precise mathematical correlation between the lowest cost and the grade of iron in sinters based on the condition of given raw materials, which can provide a reference to adjust the grade of iron in the sintering process for enterprise.
文摘The experimental prediction of the mechanical properties of minerals remains difficult because of their small particle size (typically < 2 micrometers). This work aims at examining, the effect of an applied mechanical constraint on the hydration behaviour in the case of Na rich-montmorillonite and its relation with the elastic properties. The mechanical constraint is created, at the laboratory scale, by applying a monoaxial pressure for unstressed host material (i.e. Na rich montmorillonite). The structural analysis before and after stress is achieved using an XRD profile modeling approach. This investigation allowed us to determine several structural parameters related to the nature, abundance, size, position and organization of exchangeable cation and water molecule in the interlamellar space along the c* axis. In order to evaluate the affected elastic properties, the GULP code have been used to study the structure and the interlamellar organization. Indeed, the bulk modulus and elastic constants of montmorilonite have been calculated from first principles within density functional theory (DFT). The obtained Young’s modulus for Na-montmorillonite interlayer varies from 5 GPa to 16 GPa. According to the interlamellar space configuration the calculated elastic constant tensors indicate that the a direction is slightly more flexible than the b direction. The calculated elastic constant tensor along c is much lower than the constants calculated along a and b.
基金financially supported by the General Research Fund (GRF) from Research Grant Council,the Hong Kong Government (Nos.CityU11213118 and CityU11200719)the fund from City University of Hong Kong (No.7005438)
文摘Conventional intermetallics are strong but brit-tle.However,multi-principal element intermetallics,also termed as high-entropy intermetallics(HEIs)in the recent high-entropy alloy literature,are strong but malleable,some of which even show appreciable ductility and fracture toughness at room temperature.In this article,we provide a focused review on the recent researches on HEIs,from the fundamentals,such as the concept of HEIs,the formation rules to the structural and functional properties of HEIs.The results hitherto reported clearly show that the HEIs with distinct properties could be a promising material for future structural and functional applications.