The synthetical soft magnetic properties including d.c. and a.c. magnetic properties and pulse magnetic property are reported for a newly-developed nanocrystalline Fe73.5Cu1 Nb1.5V1.5Si13.5B9 alloy The new alloy posse...The synthetical soft magnetic properties including d.c. and a.c. magnetic properties and pulse magnetic property are reported for a newly-developed nanocrystalline Fe73.5Cu1 Nb1.5V1.5Si13.5B9 alloy The new alloy possesses high d.c. relative initial permeability of 12.5×104 and low coerciv ity of 0.54 A/m. Under the conditions of Bm=0.3 T, f=100 kHz and Bm=0.2 T, f=200 kHz the core losses of the new alloy are 543 kW·m-3 and 834 kW.m-3, respectively which can be compa rable with those of nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloy. The analyses of core losses have been carried out in the wider range of f=20~104 kHz and Bm=0.0025~0.8 T and the approxi mate expression P(kW·m-3)=1.803 B:f1.77 has been obtained. The analyses of core losses in the range of f=20~104 kHz and Bmf=(10~40)×103(T.Hz) have shown that the core loss and the corresponding amplitude permeability roughly vary as P = 2.347×10-6(Bmf)1.97f-0.2231 and μa = 9.56× 105f-0.7464, respectively for the given product B.f. Some practical applica tions have also been mentioned.展开更多
Two-dimensional(2D) materials with potential applications in photonic and optoelectronic devices have attracted increasing attention due to their unique structures and captivating properties. However, generation of st...Two-dimensional(2D) materials with potential applications in photonic and optoelectronic devices have attracted increasing attention due to their unique structures and captivating properties. However, generation of stable high-energy ultrashort pulses requires further boosting of these materials' optical properties, such as higher damage threshold and larger modulation depth. Here we investigate a new type of heterostructure material with uniformity by employing the magnetron sputtering technique. Heterostructure materials are synthesized with van der Waals heterostructures consisting of MoS_2 and Sb_2Te_3. The bandgap, carrier mobility, and carrier concentration of the MoS_2-Sb_2Te_3-MoS_2 heterostructure materials are calculated theoretically. By using these materials as saturable absorbers(SAs), applications in fiber lasers with Q-switching and mode-locking states are demonstrated experimentally. The modulation depth and damage threshold of SAs are measured to be 64.17%and 14.13 J∕cm^2, respectively. Both theoretical and experimental results indicate that MoS_2-Sb_2Te_3-MoS_2 heterostructure materials have large modulation depth, and can resist high power during the generation of ultrashort pulses. The MoS_2-Sb_2Te_3-MoS_2 heterostructure materials have the advantages of low cost, high reliability, and suitability for mass production, and provide a promising solution for the development of 2D-material-based devices with desirable electronic and optoelectronic properties.展开更多
Plasma radiative properties play a pivotal role both in nuclear fusion and astrophysics.They are essential to analyze and explain experiments or observations and also in radiative-hydrodynamics simulations.Their compu...Plasma radiative properties play a pivotal role both in nuclear fusion and astrophysics.They are essential to analyze and explain experiments or observations and also in radiative-hydrodynamics simulations.Their computation requires the generation of large atomic databases and the calculation,by solving a set of rate equations,of a huge number of atomic level populations in wide ranges of plasma conditions.These facts make that,for example,radiative-hydrodynamics in-line simulations be almost infeasible.This has lead to develop analytical expressions based on the parametrization of radiative properties.However,most of them are accurate only for coronal or local thermodynamic equilibrium.In this work we present a code for the parametrization of plasma radiative properties of mono-component plasmas,in terms of plasma density and temperature,such as radiative power loss,the Planck and Rosseland mean opacities and the average ionization,which is valid for steady-state optically thin plasmas in wide ranges of plasma densities and temperatures.Furthermore,we also present some applications of this parametrization such as the analysis of the optical depth and radiative character of plasmas,the use to perform diagnostics of the electron temperature,the determination of mean radiative properties for multicomponent plasmas and the analysis of radiative cooling instabilities in some kind of experiments on high-energy density laboratory astrophysics.Finally,to ease the use of the code for the parametrization,this one has been integrated in a user interface and brief comments about it are presented.展开更多
文摘The synthetical soft magnetic properties including d.c. and a.c. magnetic properties and pulse magnetic property are reported for a newly-developed nanocrystalline Fe73.5Cu1 Nb1.5V1.5Si13.5B9 alloy The new alloy possesses high d.c. relative initial permeability of 12.5×104 and low coerciv ity of 0.54 A/m. Under the conditions of Bm=0.3 T, f=100 kHz and Bm=0.2 T, f=200 kHz the core losses of the new alloy are 543 kW·m-3 and 834 kW.m-3, respectively which can be compa rable with those of nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloy. The analyses of core losses have been carried out in the wider range of f=20~104 kHz and Bm=0.0025~0.8 T and the approxi mate expression P(kW·m-3)=1.803 B:f1.77 has been obtained. The analyses of core losses in the range of f=20~104 kHz and Bmf=(10~40)×103(T.Hz) have shown that the core loss and the corresponding amplitude permeability roughly vary as P = 2.347×10-6(Bmf)1.97f-0.2231 and μa = 9.56× 105f-0.7464, respectively for the given product B.f. Some practical applica tions have also been mentioned.
基金National Natural Science Foundation of China(NSFC)(11674036)Beijing University of Posts and Telecommunications(BUPT)(IPOC2016ZT04,IPOC2017ZZ05)+2 种基金Beijing Youth Top-Notch Talent Support Program(2017000026833ZK08)Special Program for Applied Research on Super Computation of the NSFC Guangdong Joint Fund(U1501501)XAFS Station(BL14W1)
文摘Two-dimensional(2D) materials with potential applications in photonic and optoelectronic devices have attracted increasing attention due to their unique structures and captivating properties. However, generation of stable high-energy ultrashort pulses requires further boosting of these materials' optical properties, such as higher damage threshold and larger modulation depth. Here we investigate a new type of heterostructure material with uniformity by employing the magnetron sputtering technique. Heterostructure materials are synthesized with van der Waals heterostructures consisting of MoS_2 and Sb_2Te_3. The bandgap, carrier mobility, and carrier concentration of the MoS_2-Sb_2Te_3-MoS_2 heterostructure materials are calculated theoretically. By using these materials as saturable absorbers(SAs), applications in fiber lasers with Q-switching and mode-locking states are demonstrated experimentally. The modulation depth and damage threshold of SAs are measured to be 64.17%and 14.13 J∕cm^2, respectively. Both theoretical and experimental results indicate that MoS_2-Sb_2Te_3-MoS_2 heterostructure materials have large modulation depth, and can resist high power during the generation of ultrashort pulses. The MoS_2-Sb_2Te_3-MoS_2 heterostructure materials have the advantages of low cost, high reliability, and suitability for mass production, and provide a promising solution for the development of 2D-material-based devices with desirable electronic and optoelectronic properties.
基金the Research Project of the Spanish Government(ENE2009-11208/FTN)the Keep in touch and ToIFE Projects of the European Union.
文摘Plasma radiative properties play a pivotal role both in nuclear fusion and astrophysics.They are essential to analyze and explain experiments or observations and also in radiative-hydrodynamics simulations.Their computation requires the generation of large atomic databases and the calculation,by solving a set of rate equations,of a huge number of atomic level populations in wide ranges of plasma conditions.These facts make that,for example,radiative-hydrodynamics in-line simulations be almost infeasible.This has lead to develop analytical expressions based on the parametrization of radiative properties.However,most of them are accurate only for coronal or local thermodynamic equilibrium.In this work we present a code for the parametrization of plasma radiative properties of mono-component plasmas,in terms of plasma density and temperature,such as radiative power loss,the Planck and Rosseland mean opacities and the average ionization,which is valid for steady-state optically thin plasmas in wide ranges of plasma densities and temperatures.Furthermore,we also present some applications of this parametrization such as the analysis of the optical depth and radiative character of plasmas,the use to perform diagnostics of the electron temperature,the determination of mean radiative properties for multicomponent plasmas and the analysis of radiative cooling instabilities in some kind of experiments on high-energy density laboratory astrophysics.Finally,to ease the use of the code for the parametrization,this one has been integrated in a user interface and brief comments about it are presented.