The objective of this research is to study the effect of grinding powdered superplasticizer, Portland cement, sand, and silica fume on the properties of fresh and hardened concrete. Lose Angeles Machine was used to gr...The objective of this research is to study the effect of grinding powdered superplasticizer, Portland cement, sand, and silica fume on the properties of fresh and hardened concrete. Lose Angeles Machine was used to grind these constituents. The program was arranged to determine the effect of cycles' number, superplasticizer type and dosage, silica fume dosage and condition, and gravel to sand ratio on properties of concrete. Naphthalene sulphonated formaldehyde (NSF) superplasticizers in the forms of liquid and powdered were used. Silica fume may be grinded with the other constituents (grinded), or added to concrete mixer (normal). The water/cement (w/c) ratio varied from 0.35 to 0.55 to achieve a constant slump (50-90 mm). Slumps, bulk density and mechanical properties of concrete were measured. Scanning electron microscope (SEM) was also used to show the differences between traditional and superplasticized concrete. The results showed that grinding the mixture enhances fresh and hardened concrete properties. It is also observed that grinding the mixture for 500 cycles is more effective than other numbers of grinding. In addition, superplasticized concrete exhibits compressive strength higher than traditional one at varied ages. Moreover, using powdered superplasticizer has a remarkable effect on enhancing concrete properties rather than using it in a liquid form. A dosage of 1% by weight of cement gave the highest results of compressive strength. Silica fume has an essential role in improving concrete strength and durability since it acts as very efficient void filler and as a super pozzolana. SEM observations illustrate that grinding the mixture enhances transition zone (TZ) properties and makes it denser. On the other hand, grinded mixture can be packaged in bags and transported for use in crowded cities, and so, enhances quality control, since the only requirement to obtain superplasticized concrete is to add water and gravel. This technique has many benefits such as; saving cement, labor and noise, high quality control, and enhancing concrete permeability and durability. There are many fields of application of superplasticized concrete such as; in locations which are not easily accessible by ordinary concreting techniques, in repairing and strengthen, thin coating, and for small projects when ready mix supply is not feasible.展开更多
文摘The objective of this research is to study the effect of grinding powdered superplasticizer, Portland cement, sand, and silica fume on the properties of fresh and hardened concrete. Lose Angeles Machine was used to grind these constituents. The program was arranged to determine the effect of cycles' number, superplasticizer type and dosage, silica fume dosage and condition, and gravel to sand ratio on properties of concrete. Naphthalene sulphonated formaldehyde (NSF) superplasticizers in the forms of liquid and powdered were used. Silica fume may be grinded with the other constituents (grinded), or added to concrete mixer (normal). The water/cement (w/c) ratio varied from 0.35 to 0.55 to achieve a constant slump (50-90 mm). Slumps, bulk density and mechanical properties of concrete were measured. Scanning electron microscope (SEM) was also used to show the differences between traditional and superplasticized concrete. The results showed that grinding the mixture enhances fresh and hardened concrete properties. It is also observed that grinding the mixture for 500 cycles is more effective than other numbers of grinding. In addition, superplasticized concrete exhibits compressive strength higher than traditional one at varied ages. Moreover, using powdered superplasticizer has a remarkable effect on enhancing concrete properties rather than using it in a liquid form. A dosage of 1% by weight of cement gave the highest results of compressive strength. Silica fume has an essential role in improving concrete strength and durability since it acts as very efficient void filler and as a super pozzolana. SEM observations illustrate that grinding the mixture enhances transition zone (TZ) properties and makes it denser. On the other hand, grinded mixture can be packaged in bags and transported for use in crowded cities, and so, enhances quality control, since the only requirement to obtain superplasticized concrete is to add water and gravel. This technique has many benefits such as; saving cement, labor and noise, high quality control, and enhancing concrete permeability and durability. There are many fields of application of superplasticized concrete such as; in locations which are not easily accessible by ordinary concreting techniques, in repairing and strengthen, thin coating, and for small projects when ready mix supply is not feasible.