目的探讨甲基转移酶5(methyltransferase-like 5,METTL5)在三阴乳腺癌(triple-negative breast cancer,TNBC)中的作用和潜在机制。方法采用免疫组织化学方法和Western blot检测TNBC肿瘤组织和细胞系中METTL5的表达情况。用靶向METTL5的s...目的探讨甲基转移酶5(methyltransferase-like 5,METTL5)在三阴乳腺癌(triple-negative breast cancer,TNBC)中的作用和潜在机制。方法采用免疫组织化学方法和Western blot检测TNBC肿瘤组织和细胞系中METTL5的表达情况。用靶向METTL5的shRNA(shRNA-METTL5)转染TNBC细胞后,用CCK-8、集落形成、伤口愈合以及Transwell实验分别检测细胞增殖活性、迁移与侵袭,Western blot检测Wnt/β-catenin信号关键蛋白的表达。构建异种移植瘤模型,验证敲降METTL5对TNBC细胞在体内生长以及Wnt/β-catenin信号活性的影响。结果METTL5在TNBC肿瘤组织和细胞系中表达上调(P<0.01)。敲降METTL5可抑制TNBC细胞的增殖、迁移和侵袭并降低了Wnt/β-catenin信号分子β-catenin、细胞周期蛋白(Cyclin)D1、基质金属蛋白酶(MMP)-2和MMP-7的表达(均P<0.01)。体内实验显示,敲降METTL5减缓了移植瘤生长和Wnt/β-catenin信号活性。结论敲降METTL5能抑制TNBC细胞的增殖、迁移与侵袭,其作用可能与抑制Wnt/β-catenin信号通路有关。展开更多
为了探讨5-甲基胞嘧啶(5-methylcytosine,m5C)相关基因在三阴性乳腺癌(triple negative breast cancer,TNBC)患者治疗及预后中的潜在价值,构建了基于m5C相关基因的预后预测模型,用于评估TNBC患者的预后和生存状况。从基因表达总库(gene ...为了探讨5-甲基胞嘧啶(5-methylcytosine,m5C)相关基因在三阴性乳腺癌(triple negative breast cancer,TNBC)患者治疗及预后中的潜在价值,构建了基于m5C相关基因的预后预测模型,用于评估TNBC患者的预后和生存状况。从基因表达总库(gene expression omnibus,GEO)数据库和癌症基因组图谱(the cancer genome atlas,TCGA)数据库中下载TNBC基因表达谱和相应的临床数据。通过Pearson分析确定了99个m5C相关基因,进一步采用单因素Cox分析鉴定出5个与预后有关的m5C相关基因(SLC6A14、BCL11A、UGT8、LMO4、PSAT1)并构建了风险评分(risk score)预测模型,根据风险评分中位值将患者划分为高风险组和低风险组。使用Kaplan-Meier(K-M)生存分析、受试者工作特征(receiver operating characteristic,ROC)曲线、多变量Cox回归分析、构建列线图和校准曲线评估了模型的预测效能。训练集和验证集的K-M生存曲线、受试者工作特征曲线下面积(area under the curve,AUC)分析均验证了模型具有良好的预测能力。多变量Cox回归分析显示,风险评分可作为独立的预后生物标志物。使用ssGSEA、免疫评分分析和化疗药物对高低风险组患者的半最大抑制浓度(half maximal inhibitory concentration,IC50)值差异分析显示,免疫细胞和免疫检查点基因以及大多数化疗药物的IC50值在不同风险组之间的表达存在显著差异。研究结果构建了基于5个m5C相关基因的风险评分预后预测模型,这将有助于阐明TNBC中m5C相关基因的作用机制,进而提供更有价值的预后及诊断的生物标志物和潜在的治疗靶点,为TNBC患者临床个性化治疗提供理论指导。展开更多
To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight arc...To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight architecture based on You Only Look Once(YOLO)v5m.Firstly,a lightweight upsampling operator called Content-Aware Reassembly of Features(CARAFE)is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles,reducing the missed detection rate and false detection rate.Secondly,a new prediction layer for tiny targets is added,and the feature fusion network is redesigned to enhance the detection capability for small targets.Finally,this paper applies L1 regularization to train the improved network,followed by pruning and fine-tuning operations to remove redundant channels,reducing computational and parameter complexity and enhancing the detection efficiency of the network.Training is conducted on the VisDrone2019-DET dataset.The experimental results show that the proposed algorithmreduces parameters and computation by 63.8% and 65.8%,respectively.The average detection accuracy improves by 5.15%,and the detection speed reaches 47 images per second,satisfying real-time requirements.Compared with existing approaches,including YOLOv5m and classical vehicle detection algorithms,our method achieves higher accuracy and faster speed for real-time detection of small target vehicles in edge computing.展开更多
Three coordination polymers[Mn(epda)(2,2'⁃bipy)(H_(2)O)](1),[Mn(epda)(phen)](2),and[Co_(2)(epda)2(bpe)2(H_(2)O)_(4)]·5H_(2)O(3)(H2epda=5⁃ethyl⁃pyridine⁃2,3⁃dicarboxylic acid,2,2'⁃bipy=2,2'⁃bipyridine,...Three coordination polymers[Mn(epda)(2,2'⁃bipy)(H_(2)O)](1),[Mn(epda)(phen)](2),and[Co_(2)(epda)2(bpe)2(H_(2)O)_(4)]·5H_(2)O(3)(H2epda=5⁃ethyl⁃pyridine⁃2,3⁃dicarboxylic acid,2,2'⁃bipy=2,2'⁃bipyridine,phen=phenanthroline,bpe=1,2⁃bis(4⁃pyridyl)ethylene)were synthesized by solvothermal reactions and characterized by single⁃crystal X⁃ray diffraction,thermogravimetric analyses,IR spectroscopy and elemental analysis.1 displays a 1D chain struc⁃ture,and these chains are joined by O-H…O hydrogen bonding andπ⁃πstacking interactions to generate a 2D layer structure.2 displays a 2D layer structure,and adjacent layers are generated 3D architecture throughπ⁃πstacking interactions.3 displays a 1D chain structure,and adjacent chains are generated double layer structure through O-H…O hydrogen bonding.The fluorescent properties of 1 and 3 indicate that they can potentially be used as a luminescent sensor.1 was highly selective and sensitive towards o⁃nitrophenol through different detection mechanisms,however,3 was highly selective and sensitive towards 2,4,6⁃trinitrophenol.In addition,the magnetic behavior of 2 has also been investigated.CCDC:2172533,1,2355773,2,2355774,3.展开更多
文摘为了探讨5-甲基胞嘧啶(5-methylcytosine,m5C)相关基因在三阴性乳腺癌(triple negative breast cancer,TNBC)患者治疗及预后中的潜在价值,构建了基于m5C相关基因的预后预测模型,用于评估TNBC患者的预后和生存状况。从基因表达总库(gene expression omnibus,GEO)数据库和癌症基因组图谱(the cancer genome atlas,TCGA)数据库中下载TNBC基因表达谱和相应的临床数据。通过Pearson分析确定了99个m5C相关基因,进一步采用单因素Cox分析鉴定出5个与预后有关的m5C相关基因(SLC6A14、BCL11A、UGT8、LMO4、PSAT1)并构建了风险评分(risk score)预测模型,根据风险评分中位值将患者划分为高风险组和低风险组。使用Kaplan-Meier(K-M)生存分析、受试者工作特征(receiver operating characteristic,ROC)曲线、多变量Cox回归分析、构建列线图和校准曲线评估了模型的预测效能。训练集和验证集的K-M生存曲线、受试者工作特征曲线下面积(area under the curve,AUC)分析均验证了模型具有良好的预测能力。多变量Cox回归分析显示,风险评分可作为独立的预后生物标志物。使用ssGSEA、免疫评分分析和化疗药物对高低风险组患者的半最大抑制浓度(half maximal inhibitory concentration,IC50)值差异分析显示,免疫细胞和免疫检查点基因以及大多数化疗药物的IC50值在不同风险组之间的表达存在显著差异。研究结果构建了基于5个m5C相关基因的风险评分预后预测模型,这将有助于阐明TNBC中m5C相关基因的作用机制,进而提供更有价值的预后及诊断的生物标志物和潜在的治疗靶点,为TNBC患者临床个性化治疗提供理论指导。
基金funded by the General Project of Key Research and Develop-ment Plan of Shaanxi Province(No.2022NY-087).
文摘To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight architecture based on You Only Look Once(YOLO)v5m.Firstly,a lightweight upsampling operator called Content-Aware Reassembly of Features(CARAFE)is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles,reducing the missed detection rate and false detection rate.Secondly,a new prediction layer for tiny targets is added,and the feature fusion network is redesigned to enhance the detection capability for small targets.Finally,this paper applies L1 regularization to train the improved network,followed by pruning and fine-tuning operations to remove redundant channels,reducing computational and parameter complexity and enhancing the detection efficiency of the network.Training is conducted on the VisDrone2019-DET dataset.The experimental results show that the proposed algorithmreduces parameters and computation by 63.8% and 65.8%,respectively.The average detection accuracy improves by 5.15%,and the detection speed reaches 47 images per second,satisfying real-time requirements.Compared with existing approaches,including YOLOv5m and classical vehicle detection algorithms,our method achieves higher accuracy and faster speed for real-time detection of small target vehicles in edge computing.
文摘Three coordination polymers[Mn(epda)(2,2'⁃bipy)(H_(2)O)](1),[Mn(epda)(phen)](2),and[Co_(2)(epda)2(bpe)2(H_(2)O)_(4)]·5H_(2)O(3)(H2epda=5⁃ethyl⁃pyridine⁃2,3⁃dicarboxylic acid,2,2'⁃bipy=2,2'⁃bipyridine,phen=phenanthroline,bpe=1,2⁃bis(4⁃pyridyl)ethylene)were synthesized by solvothermal reactions and characterized by single⁃crystal X⁃ray diffraction,thermogravimetric analyses,IR spectroscopy and elemental analysis.1 displays a 1D chain struc⁃ture,and these chains are joined by O-H…O hydrogen bonding andπ⁃πstacking interactions to generate a 2D layer structure.2 displays a 2D layer structure,and adjacent layers are generated 3D architecture throughπ⁃πstacking interactions.3 displays a 1D chain structure,and adjacent chains are generated double layer structure through O-H…O hydrogen bonding.The fluorescent properties of 1 and 3 indicate that they can potentially be used as a luminescent sensor.1 was highly selective and sensitive towards o⁃nitrophenol through different detection mechanisms,however,3 was highly selective and sensitive towards 2,4,6⁃trinitrophenol.In addition,the magnetic behavior of 2 has also been investigated.CCDC:2172533,1,2355773,2,2355774,3.