The Cu2ZnSnS4 (CZTS)-based solar cell is numerically simulated by a one-dimensional solar cell simulation soft- ware analysis of microelectronic and photonic structures (AMPS-1D). The device structure used in the ...The Cu2ZnSnS4 (CZTS)-based solar cell is numerically simulated by a one-dimensional solar cell simulation soft- ware analysis of microelectronic and photonic structures (AMPS-1D). The device structure used in the simulation is Al/ZnO:Al/nZn(O,S)/pCZTS/Mo. The primary motivation of this simulation work is to optimize the composition in the ZnO1-xSx buffer layer, which would yield higher conversion efficiency. By varying S/(S+O) ratio x, the conduction band offset (CBO) at CZTS/Zn(O,S) interface can range from -0.23 eV to 1.06eV if the full range of the ratio is considered. The optimal CBO of 0.23eV can be achieved when the ZnO1-xSx buffer has an S/(S+O) ratio of 0.6. The solar cell efficiency first increases with increasing sulfur content and then decreases abruptly for x〉 0.6, which reaches the highest value of 17.55% by our proposed optimal sulfur content x= 0.6. Our results provide guidance in dealing with the ZnO1-xSx buffer layer deposition for high efficiency CZTS solar cells.展开更多
In areas with topographic heterogeneity, land use change is spatially variable and influenced by climate, soil properties, and topography. To better understand this variability in the high-sediment region of the Loess...In areas with topographic heterogeneity, land use change is spatially variable and influenced by climate, soil properties, and topography. To better understand this variability in the high-sediment region of the Loess Plateau in which soil loss is most severe and sediment diameter is larger than in other regions of the plateau, this study builds some indicators to identify the characteristics of land use change and then analyze the spatial variability as it is affected by climate, soil property, and topography. We build two indicators, a land use change intensity index and a vegetation change index, to characterize the intensity of land use change, and the degree of vegetation restoration, respectively. Based on a subsection mean method, the two indicators are then used to assess the spatial variability of land use change affected by climatic, edaphic, and topographic elements. The results indicate that: 1) Land use changed significantly in the period 1998-2010. The total area experiencing land use change was 42,302 km2, accounting for 22.57%of the study area. High-coverage grassland, other woodland, and forest increased significantly, while low-coverage grassland and farmland decreased in 2010 compared with 1998.2) Land use change occurred primarily west of the Yellow River, between 35 and 38 degrees north latitude. The four transformation types, including (a) low-coverage grassland to medium-coverage grassland, (b) medium-coverage grassland to high-coverage grassland, (c) farmland to other woodland, and (d) farmland to medium-coverage grassland, were the primary types of land use change, together constituting 60% of the area experiencing land use change. 3) The spatial variability of land use change was significantly affected by properties of dryness/wetness, soil conditions and slope gradient. In general, land use changed dramatically in semi-arid regions, remained relatively stable in arid regions, changed significantly in clay-rich soil, remained relatively stable in clay-poor soil, changed dramatically in steeper slopes, and remained relatively stable in tablelands and low-lying regions. The increase in vegetation coincided with increasing changes in land use for each physical element. These findings allow for an evaluation of the effect of the Grain to Green Program, and are applicable to the design of soil and water conservation projects on the Loess Plateau of China.展开更多
The slash-and-burn system is a subsistence agronomical practice widespread in tropical areas worldwide.This system has been extensively studied,especially for its impacts on agronomical aspects and soil physicochemica...The slash-and-burn system is a subsistence agronomical practice widespread in tropical areas worldwide.This system has been extensively studied,especially for its impacts on agronomical aspects and soil physicochemical properties;however,knowledge of soil microbial diversity under slash and bum is scarce.In this study,for the first time,soil bacterial diversity of three locations from Central Mozambique,where slash and burn has been practiced for different durations of the forest fallow period(ca.25,35,and 50 years),was elucidated through a metataxonomic approach.Bacterial communities were evaluated in the genetic horizons of soils under charcoal kilns,crop fields,and forests.The aim of this study was to examine the influence of spatial(location and land use),temporal(forest fallow period),and vertical(horizon)variations on bacterial community structure in relation to soil physicochemical properties.Metataxonomic analysis detected 25 different phyla whose distribution varied horizontally and vertically in relation to soil properties(i.e.,p H,easily oxidizable organic carbon,total nitrogen,and available phosphorus),as well as particle size distribution and mineralogical composition.Such properties were strongly affected and altered by land-use management;in particular,charcoal kilns exhibited better soil properties and greater differences in bacterial community than crop fields and forests,which were quite similar.This might suggest the inability of a forest fallow period shorter than 50 years to improve soil fertility and induce changes in bacterial community.The uncommon application of the pedological approach for microbial evaluation facilitated the detection of a clear separation in bacterial composition along the soil profile,with eutrophic bacteria mainly located in the A horizon whereas oligotrophic bacteria were found in the Bo horizon.These horizontal and vertical heterogeneities in the same study represent a novelty for bacterial metataxonomic analysis.展开更多
基金Supported by the Guiding Project of Strategic Emerging Industries of Fujian Provincial Department of Science and Technology under Grant No 2015H0010the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure of Shanghai Institute of Ceramics of Chinese Academy of Sciences under Grant No SKL201404SICthe Natural Science Foundation of Fujian Province under Grant No 2016J01751
文摘The Cu2ZnSnS4 (CZTS)-based solar cell is numerically simulated by a one-dimensional solar cell simulation soft- ware analysis of microelectronic and photonic structures (AMPS-1D). The device structure used in the simulation is Al/ZnO:Al/nZn(O,S)/pCZTS/Mo. The primary motivation of this simulation work is to optimize the composition in the ZnO1-xSx buffer layer, which would yield higher conversion efficiency. By varying S/(S+O) ratio x, the conduction band offset (CBO) at CZTS/Zn(O,S) interface can range from -0.23 eV to 1.06eV if the full range of the ratio is considered. The optimal CBO of 0.23eV can be achieved when the ZnO1-xSx buffer has an S/(S+O) ratio of 0.6. The solar cell efficiency first increases with increasing sulfur content and then decreases abruptly for x〉 0.6, which reaches the highest value of 17.55% by our proposed optimal sulfur content x= 0.6. Our results provide guidance in dealing with the ZnO1-xSx buffer layer deposition for high efficiency CZTS solar cells.
基金National Key Technologies R&D Program,No.2012BAB02B00Public Welfare Foundation of the Ministry of Water Resources of China,No.201101037The Fundamental Research Funds for the Central Universities
文摘In areas with topographic heterogeneity, land use change is spatially variable and influenced by climate, soil properties, and topography. To better understand this variability in the high-sediment region of the Loess Plateau in which soil loss is most severe and sediment diameter is larger than in other regions of the plateau, this study builds some indicators to identify the characteristics of land use change and then analyze the spatial variability as it is affected by climate, soil property, and topography. We build two indicators, a land use change intensity index and a vegetation change index, to characterize the intensity of land use change, and the degree of vegetation restoration, respectively. Based on a subsection mean method, the two indicators are then used to assess the spatial variability of land use change affected by climatic, edaphic, and topographic elements. The results indicate that: 1) Land use changed significantly in the period 1998-2010. The total area experiencing land use change was 42,302 km2, accounting for 22.57%of the study area. High-coverage grassland, other woodland, and forest increased significantly, while low-coverage grassland and farmland decreased in 2010 compared with 1998.2) Land use change occurred primarily west of the Yellow River, between 35 and 38 degrees north latitude. The four transformation types, including (a) low-coverage grassland to medium-coverage grassland, (b) medium-coverage grassland to high-coverage grassland, (c) farmland to other woodland, and (d) farmland to medium-coverage grassland, were the primary types of land use change, together constituting 60% of the area experiencing land use change. 3) The spatial variability of land use change was significantly affected by properties of dryness/wetness, soil conditions and slope gradient. In general, land use changed dramatically in semi-arid regions, remained relatively stable in arid regions, changed significantly in clay-rich soil, remained relatively stable in clay-poor soil, changed dramatically in steeper slopes, and remained relatively stable in tablelands and low-lying regions. The increase in vegetation coincided with increasing changes in land use for each physical element. These findings allow for an evaluation of the effect of the Grain to Green Program, and are applicable to the design of soil and water conservation projects on the Loess Plateau of China.
基金supported by funding for the project“PSA2017-Discovering‘Terra Preta’in Mozambique:A Model for Sustainable Agroforestry Systems to Preserve Soil,Forest and Wilderness Areas”from the Polytechnic University of Marche,Italy。
文摘The slash-and-burn system is a subsistence agronomical practice widespread in tropical areas worldwide.This system has been extensively studied,especially for its impacts on agronomical aspects and soil physicochemical properties;however,knowledge of soil microbial diversity under slash and bum is scarce.In this study,for the first time,soil bacterial diversity of three locations from Central Mozambique,where slash and burn has been practiced for different durations of the forest fallow period(ca.25,35,and 50 years),was elucidated through a metataxonomic approach.Bacterial communities were evaluated in the genetic horizons of soils under charcoal kilns,crop fields,and forests.The aim of this study was to examine the influence of spatial(location and land use),temporal(forest fallow period),and vertical(horizon)variations on bacterial community structure in relation to soil physicochemical properties.Metataxonomic analysis detected 25 different phyla whose distribution varied horizontally and vertically in relation to soil properties(i.e.,p H,easily oxidizable organic carbon,total nitrogen,and available phosphorus),as well as particle size distribution and mineralogical composition.Such properties were strongly affected and altered by land-use management;in particular,charcoal kilns exhibited better soil properties and greater differences in bacterial community than crop fields and forests,which were quite similar.This might suggest the inability of a forest fallow period shorter than 50 years to improve soil fertility and induce changes in bacterial community.The uncommon application of the pedological approach for microbial evaluation facilitated the detection of a clear separation in bacterial composition along the soil profile,with eutrophic bacteria mainly located in the A horizon whereas oligotrophic bacteria were found in the Bo horizon.These horizontal and vertical heterogeneities in the same study represent a novelty for bacterial metataxonomic analysis.