期刊文献+
共找到300,139篇文章
< 1 2 250 >
每页显示 20 50 100
Microstructures,corrosion behavior and mechanical properties of as-cast Mg-6Zn-2X(Fe/Cu/Ni)alloys for plugging tool applications 被引量:1
1
作者 Baosheng Liu Jiali Wei +4 位作者 Shaohua Zhang Yuezhong Zhang Pengpeng Wu Daqing Fang Guorui Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期697-711,共15页
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t... Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications. 展开更多
关键词 magnesium alloys microstructure micro-galvanic corrosion mechanical properties
下载PDF
Effects of deformation temperatures on microstructures,aging behaviors and mechanical properties of Mg-Gd-Er-Zr alloys fabricated by hard-plate rolling 被引量:1
2
作者 Ke Liu Dalong Hu +4 位作者 Feng Lou Zijian Yu Shubo Li Xian Du Wenbo Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2345-2359,共15页
In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures... In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures of these final-rolled sheets are inhomogeneous,mainly including coarse deformed grains and dynamic recrystallized(DRXed)grains,and the volume fraction of these coarse deformed grains increases as the rolling temperature increases.Thus,more DRXed grains can be found in R-385℃sheet,resulting in a smaller average grain size and weaker basal texture,while the biggest grains and the highest strong basal texture are present in R-450℃sheet.Amounts of dynamic precipitation ofβphases which are mainly determined by the rolling temperature are present in these sheets,and its precipitation can consume the content of Gd solutes in the matrix.As a result,the lowest number density ofβphase in R-450℃sheet is beneficial to modify the age hardening response.Thus,the R-450℃sheet displays the best age hardening response because of a severe traditional precipitation ofβ’(more)andβH/βM(less)precipitates,resulting in a sharp improvement in strength,i.e.ultimate tensile strength(UTS)of∼518±17 MPa and yield strength(YS)of∼438±18 MPa.However,the elongation(EL)of this sheet reduces greatly,and its value is∼2.7±0.3%.By contrasting,the EL of the peak-aging R-385℃sheet keeps better,changing from∼4.9±1.2%to∼4.8±1.4%due to a novel dislocation-induced chain-like precipitate which is helpful to keep good balance between strength and ductility. 展开更多
关键词 Mg-Gd-Er-zr sheets Age hardening response PRECIPITATES Mechanical properties
下载PDF
Transformation of long-period stacking ordered structures in Mg-Gd-Y-Zn alloys upon synergistic characterization of first-principles calculation and experiment and its effects on mechanical properties 被引量:1
3
作者 Mingyu Li Guangzong Zhang +4 位作者 Siqi Yin Changfeng Wang Ying Fu Chenyang Gu Renguo Guan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1867-1879,共13页
Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process... Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed. 展开更多
关键词 Mg-Gd-Y-zn alloys Long-period stacking ordered First-principles calculations ENTHALPIES Mechanical properties
下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys 被引量:1
4
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-zn-Ni-Y alloys LPSO phase Heat treatment MICROSTRUCTURE Damping properties.
下载PDF
A new insight into LPSO phase transformation and mechanical properties uniformity of large-scale Mg-Gd-Y-Zn-Zr alloy prepared by multi-pass friction stir processing 被引量:1
5
作者 Xiaohu Guan Wen Wang +7 位作者 Ting Zhang Pai Peng Qiang Liu Peng Han Ke Qiao Jun Cai Liqiang Wang Kuaishe Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期2041-2056,共16页
A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri... A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate. 展开更多
关键词 Friction stir processing MULTI-PASS Mg-Gd-Y-zn-zr alloy LPSO phase transformation Mechanical properties
下载PDF
Influence of Sr on microstructure evolution,mechanical and corrosion properties of extruded Mg-2Zn-0.5Ca alloy
6
作者 Junlong Qin Lili Chang Xiaojing Su 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3744-3757,共14页
Degradable Mg-Zn-Ca alloys with Sr addition were prepared by vacuum melting and hot extrusion.Effect of Sr on microstructure,mechanical and corrosion properties of hot extruded Mg-2Zn-0.5Ca-xSr(x=0,0.5,1.0)alloys was ... Degradable Mg-Zn-Ca alloys with Sr addition were prepared by vacuum melting and hot extrusion.Effect of Sr on microstructure,mechanical and corrosion properties of hot extruded Mg-2Zn-0.5Ca-xSr(x=0,0.5,1.0)alloys was investigated.The results show that Sr addition into Mg-2Zn-0.5Ca alloys produced significant grain refinement in ingots and obvious texture weakening effects in extruded bars.The ultimate compressive strength increased as the Sr content increased,while the ultimate tensile strength increased firstly and then declined with the increasing of Sr content.Electrochemical tests indicated the corrosion current density of the surface parallel to extrusion direction(ED)was much lower than that of the surface perpendicular to ED.In-vitro immersion tests demonstrated the increase in the pH of solution and weight loss of Mg-2Zn-0.5Ca-0.5Sr alloy remain the lowest during immersion tests.The best comprehensive property was obtained in Mg-2Zn-0.5Ca-0.5Sr alloy,which has the largest strength and the best corrosion resistance. 展开更多
关键词 Mg-zn-Ca-Sr alloys EXTRUSION Microstructure Mechanical properties Corrosion properties
下载PDF
Impact of scandium and terbium on the mechanical properties,corrosion behavior,and biocompatibility of biodegradable Mg-Zn-Zr-Mn alloys
7
作者 Khurram Munir Jixing Lin +3 位作者 Xian Tong Arne Biesiekierski Yuncang Li Cuie Wen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期546-572,共27页
Magnesium(Mg)-based bone implants degrade rapidly in the physiological environment of the human body which affects their structural integrity and biocompatibility before adequate bone repair.Rare earth elements(REEs)h... Magnesium(Mg)-based bone implants degrade rapidly in the physiological environment of the human body which affects their structural integrity and biocompatibility before adequate bone repair.Rare earth elements(REEs)have demonstrated their effectiveness in tailoring the corrosion and mechanical behavior of Mg alloys.This study methodically investigated the impacts of scandium(Sc)and terbium(Tb)in tailoring the corrosion resistance,mechanical properties,and biocompatibility of Mg–0.5Zn–0.35Zr–0.15Mn(MZZM)alloys fabricated via casting and hot extrusion.Results indicate that addition of Sc and Tb improved the strength of MZZM alloys via grain size reduction and solid solution strengthening mechanisms.The extruded MZZM–(1–2)Sc–(1–2)Tb(wt.%)alloys exhibit compressive strengths within the range of 336–405 MPa,surpassing the minimum required strength of 200 MPa for bone implants by a significant margin.Potentiodynamic polarization tests revealed low corrosion rates of as–cast MZZM(0.25 mm/y),MZZM–2Tb(0.45 mm/y),MZZM–1Sc–1Tb(0.18 mm/y),and MZZM–1Sc–2Tb(0.64 mm/y),and extruded MZZM(0.17 mm/y),MZZM–1Sc(0.15 mm/y),MZZM-2Sc(0.45 mm/y),MZZM-1Tb(0.17 mm/y),MZZM-2Tb(0.10 mm/y),MZZM–1Sc-1Tb(0.14 mm/y),MZZM-1Sc-2Tb(0.40 mm/y),and MZZM–2Sc–2Tb(0.51 mm/y)alloys,which were found lower compared to corrosion rate of high-purity Mg(~1.0 mm/y)reported in the literature.Furthermore,addition of Sc,or Tb,or Sc and Tb to MZZM alloys did not adversely affect the viability of SaOS2 cells,but enhanced their initial cell attachment,proliferation,and spreading shown via polygonal shapes and filipodia.This study emphasizes the benefits of incorporating Sc and Tb elements in MZZM alloys,as they effectively enhance corrosion resistance,mechanical properties,and biocompatibility simultaneously. 展开更多
关键词 Corrosion property In vitro cytotoxicity Magnesium alloys Mechanical property Rare earth elements
下载PDF
Soil Physico-Chemical Properties and Different Altitudes Affect Arbuscular Mycorrhizal Fungi Abundance and Colonization in Cacao Plantations of Cameroon
8
作者 Franklin Tounkam Ketchiemo Beaulys Fotso +4 位作者 Astride Stéphanie Mouafi Djabou Victor Jos Eyamo Evina Japhet Youri Essambita Franck Maxime Ewane Tang Nicolas Niemenak 《American Journal of Plant Sciences》 CAS 2024年第2期57-82,共26页
This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-... This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-ecological zones. Soil samples were also used to evaluate directly the AMF abundance following the various altitudes and after trapping by sorghum plant. The results showed that soil properties, AMF spore abundances and colonization fluctuated significantly at different altitudes. The most represented texture was sandy loam. The bimodal zone presented a homogeneous texture (sandy loam) in all its localities. Cacao soil chemical characteristics showed that, the highest nitrogen rate (0.47%;p 0.05, Scott-Knott test) was recorded at Melong in a monomodal zone while Tonga in the Western highlands displayed the lowest rate (0.13%). Soil P concentration was significantly high in monomodal zones (Mbanga and Melong). Soil pH level indicated that the soil from Tonga in the Western highlands was neutral (pH = 6.67), and soils of other localities under study were acidic with the lowest (4.75) pH level recorded at Melong in a monomodal zone. In soil samples, the highest spore density (1.03 spores/g soil) was observed at Ntui in Bimodal zone, while the lowest spore density (0.26 spores/g soil) was observed at Bafang in the Western highlands. Root colonization showed that the sample from Bokito in a bimodal zone displayed the best frequency of mycorrhization (86.11%) while the sample from Bafang in the Western highlands recorded the lowest (27.11%). The PCA analysis highlighted that available phosphorus, pH and altitude all strongly correlated with AMF root colonization ability and can be used as a predictor of AMF colonization ability in cacao rhizosphere. 展开更多
关键词 Agroecological zone Altitude Variations Arbuscular Mycorrhizal Fungi Soil Properties Theobroma cacao
下载PDF
Synergistic enhancement on mechanical properties and corrosion resistance of biodegradable Mg-Zn-Y alloy via V-microalloying
9
作者 Jiaxin Zhang Xin Ding +3 位作者 Ruirun Chen Wenchao Cao Jinshan Zhang Rui Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期530-545,共16页
For the sake of improving the mechanical properties and corrosion resistance of biodegradable Mg alloy synergistically,various content of element V(0,0.05,0.10,0.15,0.20 wt.%)are introduced into an Mg-Zn-Y alloy with ... For the sake of improving the mechanical properties and corrosion resistance of biodegradable Mg alloy synergistically,various content of element V(0,0.05,0.10,0.15,0.20 wt.%)are introduced into an Mg-Zn-Y alloy with long-period stacking ordered(LPSO)structure,and the effects of V on its microstructure,mechanical properties and corrosion resistance are investigated systematically.The results indicate that the grains are effectively refined by V addition,and the primaryα-Mg in Mg-Zn-Y-V0.1 alloy is most significantly refined,with grain size being decreased by 62%.The amount of 18R LPSO structure is increased owing to the V addition.The growth mode of the second phase(W-phase and 18R LPSO structure)is transformed to divorced growth pattern,which ascribes to the thermodynamic drive force of V to promote the nucleation of LPSO phase.Thus,18R LPSO structure presents a continuous distribution.Due to grains refinement and modification of second phase,the tensile strength and strain of alloys are both enhanced effectively.Especially,the ultimate tensile strength and the elongation of V0.1 alloy are 254 MPa and 15.26%,which are 41%and 61%higher than those of V-free alloy,respectively.Owing to the continuously distributed 18R LPSO structure with refined grains and stable product film,the weight loss and hydrogen evolution corrosion rates of V0.1 alloy are 7.1 and 6.2 mmy^(-1),respectively,which are 42.6%and 45.4%lower than those of V-free alloy. 展开更多
关键词 Corrosion Mechanical property V-microalloying LPSO SKPFM
下载PDF
Physical-Rheological Properties and Performances of Rejuvenated(Styrene-Butadiene-Styrene)Asphalt with Polymerized-MDI and Aromatic Oil
10
作者 Ao Lu Ming Xiong +3 位作者 Chen Chen Liangjiang Li Haibei Tan Xiong Xu 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1633-1646,共14页
Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binder... Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binders and mixtures.However,these rejuvenators inevitably compromise their high-temperature properties and deformation resistances because they dilute asphalt binder but do not fix the damaged structures of aged SBS.In this study,a highly-active chemical called polymerized 4,4-diphenylmethane diisocyanate(PMDI)was used to assist the traditional AO asphalt rejuvenator.The physical and rheological characteristics of rejuvenated SBSMA binders and the moisture-induced damage and rut deformation performances of corresponding mixtures were comparatively evaluated.The results showed that the increasing proportion of AO compromises the hightemperature property and hardness of aged SBSMA binder,and an appropriate amount of PMDI works to compensate such losses;3%rejuvenator at mass ratio of AO:PMDI=70:30 can have a rejuvenated SBSMA binder with a high-temperature performance similar to that of fresh binder,approximately at 71.4°C;the use of AO can help reduce the viscosity of PMDI rejuvenated SBSMA binder for improving its workability;PMDI can help improve the resistance of AO rejuvenated SBSMA binder to deformation,especially at elevated temperatures,through its chemical reactions with aged SBS;moisture induction can enhance the resistance to damage of rejuvenated mixtures containing AO/PMDI or only PMDI;and the rejuvenator with a mass ratio of AO:PMDI=70:30 can lead the rejuvenated mixture to meet the application requirement,with a rut depth of only 2.973 mm,although more PMDI can result in a higher resistance of rejuvenated mixtures to high-temperature deformation. 展开更多
关键词 Aged SBS modified asphalt polymerized 4 4-diphenylmethane diisocyanate aromatic oil physical properties rheological properties mixture performance
下载PDF
Microstructures and Properties of Biomedical Mg-Zn-Sn-Zr Rolled Alloys
11
作者 周生刚 ZHANG Daxin +5 位作者 XU Yang DUAN Jihao LI Tao LIU Junfeng WANG Peng 曹勇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期766-773,共8页
The as-cast Mg-2.0Zn-1.5Sn-xZr(x=0,0.4,0.6,0.8,1.0 wt%)alloy was rolled with the pressure less than 5%each time.The microstructure,mechanical properties,corrosion properties and biocompatibility of the alloy were inve... The as-cast Mg-2.0Zn-1.5Sn-xZr(x=0,0.4,0.6,0.8,1.0 wt%)alloy was rolled with the pressure less than 5%each time.The microstructure,mechanical properties,corrosion properties and biocompatibility of the alloy were investigated.The microstructure of the alloy was observed and analyzed by scanning electron microscope,and the tensile test was carried out by universal tensile machine.The corrosion resistance of the alloy in Hank's solution was studied by hydrogen evolution experiment and electrochemical test,and the biocompatibility of the alloy was tested by L929 cells.The results show that Mg-2Zn-1.5Sn-xZr alloy has excellent mechanical properties.The elongation of Mg-2Zn-1.5Sn-xZr alloy decreases with the increase of Zr content,but the tensile strength first increases and then decreases with the increase of Zr concentration.When the Zr content is 0.8 wt%,the maximum tensile strength of the alloy is 235 MPa.The results of hydrogen evolution experiment and electrochemical analysis show that the corrosion resistance of the alloy is the best when the Zr content is 0.8 wt%,and all the five alloys have high biocompatibility.In conclusion,the rolled alloy has good properties and has broad application prospects in the field of biomaterials. 展开更多
关键词 magnesium alloy corrosion performance mechanical properties BIOCOMPATIBILITY
下载PDF
Effect of Size Change on Mechanical Properties of Monolayer Arsenene
12
作者 郭娟 刘贵立 孙震宇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期206-212,共7页
The Young's modulus, shear modulus and Poisson's ratio of monolayer arsenene with different sizes were calculated by finite element method, so as to explore the influence of dimension and orientation on the me... The Young's modulus, shear modulus and Poisson's ratio of monolayer arsenene with different sizes were calculated by finite element method, so as to explore the influence of dimension and orientation on the mechanical properties of monolayer arsenene. The calculation results show that the small size has a significant effect on the mechanical properties of the monolayer arsenene. The smaller the size, the larger the Young's modulus and Poisson's ratio of the monolayer arsenene. The size change has a great influence on the Young's modulus of the arsenene handrail direction, and the Young's modulus of the zigzag direction is not sensitive to the size change. Similarly, the size change has a significant effect on the shear modulus of arsenene in the handrail direction, while the shear modulus in the zigzag direction has no significant effect on its size change. For the Poisson's ratio, the situation is just the opposite, and the effect of the size change on the Poisson's ratio of the arsenene zigzag direction is greater than that of the handrail direction. 展开更多
关键词 finite element method arsenene size change mechanical properties
下载PDF
Effect of Fe_(2)O_(3)on the Structure,Physical Properties and Crystallization of CaO-Al_(2)O_(3)-SiO_(2)Glass
13
作者 张峰 XIONG Dehua +7 位作者 谢俊 张继红 HAN Jianjun CHEN Dequan WEN Zhongquan FAN Zhenhua CHEN Lina SUN Tengfei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期954-961,共8页
The calcium aluminosilicate-based glasses(CaO-Al_(2)O_(3)-SiO_(2),CAS)with different Fe_(2)O_(3)content(0.10wt%,0.50wt%,0.90wt%,and 1.30wt%)were prepared by traditional melt-quenching method.The glass network structur... The calcium aluminosilicate-based glasses(CaO-Al_(2)O_(3)-SiO_(2),CAS)with different Fe_(2)O_(3)content(0.10wt%,0.50wt%,0.90wt%,and 1.30wt%)were prepared by traditional melt-quenching method.The glass network structure,thermal and mechanical properties,and crystallization behavior changes were investigated by nuclear magnetic resonance spectrometer,Fourier-transform infrared spectro-photometer,X-ray diffractometer,differential scanning calorimetry and field emission scanning electron microscope measurements.The change of Q^(n)in glass structures reveals the glass network connectivity decreases due to the increasing content of Fe_(2)O_(3)addition,resulting in the increasing of non-bridging number in glass structure.The glass densities slightly rise from 2.644 to 2.681 g/cm^(3),while Vickers’s hardness increases at first,from 6.469 to 6.901 GPa,then slightly drops to 6.745 GPa,with Fe_(2)O_(3)content increase.There is almost no thermal expansion coefficient change from different Fe_(2)O_(3)content.The glass transmittance in visible range gradually decreases with higher Fe_(2)O_(3)content,resulting from the strong absorption of Fe^(2+)and Fe^(3+)ions.The calculated activation energy from thermal analysis results first decreases from 282.70 to 231.18 kJ/mol,and then increases to 244.02 kJ/mol,with the Fe_(2)O_(3)content increasing from 0.10wt%to 1.30wt%.Meanwhile,the maximum Avrami constant of 2.33 means the CAS glasses exhibit two-dimensional crystallization.All of the CAS glass-ceramics samples contain main crystal phase of anorthite,the microstructure appears lamellar and columnar crystals. 展开更多
关键词 calcium aluminosilicate glass network structure physical properties CRYSTALLIzATION
下载PDF
Quantitative characterizations of anisotropic dynamic properties in organic-rich shale with different kerogen content
14
作者 Jian-Yong Xie Yan-Ping Fang +4 位作者 Xing-Hua Wu Jian'er Zhao Jun-Cheng Dai Jun-Xing Cao Ji-Xin Deng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期855-865,共11页
Understanding the quantitative responses of anisotropic dynamic properties in organic-rich shale with different kerogen content(KC)is of great significance in hydrocarbon exploration and development.Conducting control... Understanding the quantitative responses of anisotropic dynamic properties in organic-rich shale with different kerogen content(KC)is of great significance in hydrocarbon exploration and development.Conducting controlled experiments with a single variable is challenging for natural shales due to their high variations in components,diagenesis conditions,or pore fluid.We employed the hot-pressing technique to construct 11 well-controlled artificial shale with varying KC.These artificial shale samples were successive machined into prismatic shape for ultrasonic measurements along different directions.Observations revealed bedding perpendicular P-wave velocities are more sensitive to the increasing KC than bedding paralleling velocities due to the preferential alignments of kerogen.All elastic stiffnesses except C_(13)are generally decreasing with the increasing KC,the variation of C_(1) and C_(33)on kerogen content are more sensitive than those of C_(44)and C_(66).Apparent dynamic mechanical parameters(v and E)were found to have linear correlation with the true ones from complete anisotropic equations independent of KC,which hold value towards the interpretation of well logs consistently across formations,Anisotropic mechanical parameters(ΔE and brittlenessΔB)tend to decrease with the reducing KC,withΔB showing great sensitivity to KC variations.In the range of low KC(<10%),the V_(P)/V_(S) ratio demonstrated a linearly negative correlation with KC,and the V_(P)/V_(S) ratio magnitude of less than 1.75may serve as a significant characterization for highly organic-rich(>10%)shale,compilation of data from natural organic rich-shales globally verified the similar systematic relationships that can be empirically used to predict the fraction of KC in shales. 展开更多
关键词 Elastic properties Organic shale ANISOTROPY Kerogen content Physical modeling
下载PDF
Synergistic effect of Zr and Mo on precipitation and high-temperature properties of Al-Si-Cu-Mg alloys
15
作者 Chao Gao Bing-rong Zhang +2 位作者 Yin-ming Li Zhi-ming Wang Xiang-bin Meng 《China Foundry》 SCIE EI CAS CSCD 2024年第1期71-81,共11页
This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,... This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,to be used in automobile engines at high temperatures,was prepared by adding Zr and Mo into Al-Si-Cu-Mg alloy.The synergistic effects of Zr and Mo on the microstructure evolution and high-temperature mechanical properties were studied.Results show that the addition of Zr and Mo generates a series of intermetallic phases dispersed in the alloy.They can improve the strength of the alloy by hindering dislocation movement and crack propagation.In addition,some nano-strengthened phases show coherent interfaces with the matrix and improve grain refinement.The addition of Mo greatly improves the heat resistance of the alloy.The extremely low diffusivity of Mo enables it to improve the thermal stability of the intermetallic phases,inhibit precipitation during aging,reduce the size of the precipitates,and improve the heat resistance of the alloy. 展开更多
关键词 Al-Si-Cu-Mg alloy high-temperature properties zr-Mo-rich intermetallics nano-strengthening phases
下载PDF
Microstructural characterization and mechanical properties of(TiC+TiB)/TA15 composites prepared by an in-situ synthesis method
16
作者 Zhi-yong Zhang Jiao-jiao Cheng +3 位作者 Jia-qi Xie Shi-bing Liu Kun Shi Jun Zhao 《China Foundry》 SCIE EI CAS CSCD 2024年第2期168-174,共7页
Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based... Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based composites reinforced with a volume fraction of 10% to 25%(TiB+TiC)were prepared using powder metallurgy and casting technique.Microstructural characterization and phase constitution were examined using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray diffraction(XRD).In addition,the microhardness,room temperature(RT)and high temperature(HT)tensile properties of the composites were evaluated.Results revealed that the reinforcements are distributed uniformly even in the composites with a high volume of TiB and TiC.However,as the volume fraction exceeds 15%,TiB and TiC particles become coarsening and exhibit rod-like and dendritic-like morphology.Microhardness increases gradually from 321.2 HV for the base alloy to a maximum of 473.3 HV as the reinforcement increases to 25vol.%.Tensile test results indicate that a reinforcement volume fraction above 20% is beneficial for enhancing tensile strength and yield strength at high temperatures,but it has an adverse effect on room temperature elongation.Conversely,if the reinforcement volume fraction is below 20%,it can improve high-temperature elongation when the temperature exceeds 600℃. 展开更多
关键词 titanium matrix composites microstucture MICROHARDNESS tensile properties in-situ synthesis
下载PDF
Effect of annealing treatment on the microstructure and mechanical properties of warm-rolled Mg-Zn-Gd-Ca-Mn alloys
17
作者 Yifan Song Xihai Li +5 位作者 Jinliang Xu Kai Zhang Yaozong Mao Hong Yan Huiping Li Rongshi Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2208-2220,共13页
The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)all... The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)alloy was developed using the unique role of rare earth and Ca solute atoms.In addition,the influence of the annealing process on the grain size,second phase,texture,and mechanical properties of the warm-rolled sheet at room temperature was analyzed with the goal of developing high-plasticity mag-nesium alloy sheets and obtaining optimal thermal-mechanical treatment parameters.The results show that the annealing temperature has a significant effect on the microstructure and properties due to the low alloying content:there are small amounts of larger-sized block and long string phases along the rolling direction(RD),as well as several spherical and rodlike particle phases inside the grains.With increas-ing annealing temperature,the grain size decreases and then increases,and the morphology,number,and size of the second phase also change correspondingly.The particle phase within the grains vanishes at 450℃,and the grain size increases sharply.In the full recrystal-lization stage at 300-350℃,the optimum strength-plasticity comprehensive mechanical properties are presented,with yield strengths of 182.1 and 176.9 MPa,tensile strengths of 271.1 and 275.8 MPa in the RD and transverse direction(TD),and elongation values of 27.4%and 32.3%,respectively.Moreover,there are still some larger-sized phases in the alloy that influence its mechanical properties,which offers room for improvement. 展开更多
关键词 Mg-zn-Gd-Ca-Mn alloy annealing treatment microstructure TEXTURE dynamic recrystallization mechanical properties
下载PDF
Microstructural evolution and mechanical properties of AZ31 Mg alloy fabricated by a novel bifurcation-equal channel angular pressing
18
作者 HAN Ting-zhuang ZHANG Hua +6 位作者 YANG Mu-xuan WANG Li-fei LU Li-wei ZHANG De-chuang CAO Xia XU Ji BAI Jian-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期2961-2972,共12页
In this work,a novel type of short-process deformation technology of Mg alloys,bifurcation-equal channel angular pressing(B-ECAP),was proposed to refine grain and improve the basal texture.The cylindrical billets were... In this work,a novel type of short-process deformation technology of Mg alloys,bifurcation-equal channel angular pressing(B-ECAP),was proposed to refine grain and improve the basal texture.The cylindrical billets were first compressed into the die cavity,then sequentially flowed downward through a 90°corner and two 120°shear steps.The total strain of B-ECAP process could reach 3.924 in a single pass.The results of microstructure observation showed that DRX occurred at upsetting process in the die cavity and completed at position D.The grains were refined to 6.3μm at being extruded at 300℃ and grew obviously with the extrusion temperature increase.The shear tress induced by 900 corner and two 120°shear steps resulted in the basal poles of most grains tilted to extrusion direction(ED)by±25°.Compared with the original billets,the extruded sheets exhibited higher yield strengths(YS),which was mainly attributed to the grain refinement.The higher Schmid factor caused by ED-tilt texture resulted in a fracture elongation(FE)more than that of the original bar in ED,while was equivalent to that in transverse direction(TD).As the extrusion temperature increased,the variation of UTS and YS in ED and TD decreased gradually without ductility obviously decrease. 展开更多
关键词 Az31 Mg alloy B-ECAP microstructure texture evolution mechanical properties
下载PDF
Evolution of mechanical properties,localized corrosion resistance and microstructure of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging
19
作者 DAI Xuan-xuan LI Yu-zhang +2 位作者 LIU Sheng-dan YE Ling-ying BAO Chong-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1790-1807,共18页
The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte... The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries. 展开更多
关键词 Al-zn-Mg-Cu alloy non-isothermal aging mechanical properties localized corrosion resistance MICROSTRUCTURE
下载PDF
Microstructure homogeneity and mechanical properties of laser-arc hybrid welded AZ31B magnesium alloy
20
作者 Yongkang Gao Kangda Hao +4 位作者 Lianyong Xu Yongdian Han Lei Zhao Wenjing Ren Hongyang Jing 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1986-1995,共10页
Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that lase... Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that laser-arc hybrid welding was beneficial to improve the weld formation of magnesium alloy by inhibiting the defect of undercut and pores.The weld microstructure was mainly columnar grains neighboring the fusion line and equiaxed grains at the weld center.It was interesting that the grain size at the upper arc zone was smaller than that at the lower laser zone,with the difference mainly affected by laser power rather than welding current and welding speed.The welding parameters were optimized as laser power of 3.5 kW,welding current of 100 A and welding speed of 1.5 m/min.In this case,the weld was free of undercut and pores,and the tensile strength and elongation rate reached 252 MPa and 11.2%,respectively.Finally,the microstructure homogeneity was illustrated according to the heat distribution,and the evolution law of tensile properties was discussed basing on the weld formation and microstructure characteristics. 展开更多
关键词 Magnesium alloy Laser-arc hybrid welding Microstructure homogeneity Mechanical properties
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部