期刊文献+
共找到10,152篇文章
< 1 2 250 >
每页显示 20 50 100
A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency 被引量:3
1
作者 Yahui Liu Shunda Qiao +4 位作者 Chao Fang Ying He Haiyue Sun Jian Liu Yufei Ma 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第3期26-34,共9页
A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manu... A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF. 展开更多
关键词 light-induced thermoelectric spectroscopy quartz tuning fork multi-pass cell gas sensing
下载PDF
Morphological disruption and visual tuning alterations in the primary visual cortex in glaucoma(DBA/2J)mice 被引量:1
2
作者 Yin Yang Zhaoxi Yang +9 位作者 Maoxia Lv Ang Jia Junjun Li Baitao Liao Jing’an Chen Zhengzheng Wu Yi Shi Yang Xia Dezhong Yao Ke Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期220-225,共6页
Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the pr... Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the primary visual cortex(V1)is altered in glaucoma.This study used DBA/2J mice as a model for spontaneous secondary glaucoma.The aim of the study was to compare the electrophysiological and histomorphological chara cteristics of neurons in the V1between 9-month-old DBA/2J mice and age-matched C57BL/6J mice.We conducted single-unit recordings in the V1 of light-anesthetized mice to measure the visually induced responses,including single-unit spiking and gamma band oscillations.The morphology of layerⅡ/Ⅲneurons was determined by neuronal nuclear antigen staining and Nissl staining of brain tissue sections.Eighty-seven neurons from eight DBA/2J mice and eighty-one neurons from eight C57BL/6J mice were examined.Compared with the C57BL/6J group,V1 neurons in the DBA/2J group exhibited weaker visual tuning and impaired spatial summation.Moreove r,fewer neuro ns were observed in the V1 of DBA/2J mice compared with C57BL/6J mice.These findings suggest that DBA/2J mice have fewer neurons in the VI compared with C57BL/6J mice,and that these neurons have impaired visual tuning.Our findings provide a better understanding of the pathological changes that occur in V1 neuron function and morphology in the DBA/2J mouse model.This study might offer some innovative perspectives regarding the treatment of glaucoma. 展开更多
关键词 DBA/2J DEGENERATION gamma band oscillations GLAUCOMA primary visual cortex(V1) RETINA single-unit recording tuning curve
下载PDF
Conceptual design of a 714-MHz RFQ for compact proton injectors and development of a new tuning algorithm on its aluminium prototype
3
作者 Yi-Xing Lu Wen-Cheng Fang +1 位作者 Yu-Sen Guo Zhen-Tang Zhao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期45-58,共14页
Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact pro... Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact proton injectors for medi-cal applications is designed in this study.The RFQ is designed to accelerate proton beams from 50 keV to 4 MeV within a short length of 2 m and can be matched closely with the downstream drift tube linac to capture more particles through a preliminary optimization.To develop an advanced RFQ,challenging techniques,including fabrication and tuning method,must be evaluated and verified using a prototype.An aluminium prototype is derived from the conceptual design of the RFQ and then redesigned to confirm the radio frequency performance,fabrication procedure,and feasibility of the tuning algorithm.Eventually,a new tuning algorithm based on the response matrix and least-squares method is developed,which yields favorable results based on the prototype,i.e.,the errors of the dipole and quadrupole components reduced to a low level after several tuning iterations.Benefiting from the conceptual design and techniques obtained from the prototype,the formal mechanical design of the 2-m RFQ is ready for the next manufacturing step. 展开更多
关键词 Compact proton injector RFQ IH-DTL High gradient tuning
下载PDF
基于prompt tuning的中文文本多领域情感分析研究
4
作者 赵文辉 吴晓鸰 +1 位作者 凌捷 HOON Heo 《计算机工程与科学》 CSCD 北大核心 2024年第1期179-190,共12页
不同领域的情感文本表达方式不一样,通常需要为各个领域训练相应的情感分析模型。针对无法用一个模型进行高效多领域情感分析的问题,提出了基于提示微调(prompt tuning)的多领域文本情感分析方法MSAPT。借助hard prompt,指示情感文本的... 不同领域的情感文本表达方式不一样,通常需要为各个领域训练相应的情感分析模型。针对无法用一个模型进行高效多领域情感分析的问题,提出了基于提示微调(prompt tuning)的多领域文本情感分析方法MSAPT。借助hard prompt,指示情感文本的所属领域和待选的情感标签,调动不同领域情感分析相关的知识,再为情感分析预训练一个统一的“通才模型”,在下游的各领域文本学习中,保持模型冻结,通过prompt tuning使模型学习到下游各领域情感文本的特征。MSAPT仅需保存一个模型和一些参数量远远小于模型的prompt,实现了多领域情感分析。在多个属于不同领域的情感文本数据集上进行实验,结果表明仅进行prompt tuning时,MSAPT效果优于模型微调(model tuning)的。最后,分别对适应特定领域的prompt tuning、hard prompt、soft prompt的长度和中间训练数据集的大小进行消融实验,从证明其对情感分析效果的影响。 展开更多
关键词 多领域情感分析 提示微调 预训练语言模型 T5
下载PDF
Vibration attenuation performance of wind turbine tower using a prestressed tuned mass damper under seismic excitation
5
作者 Lei Zhenbo Liu Gang +1 位作者 Wang Hui Hui Yi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期511-524,共14页
With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau... With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation. 展开更多
关键词 wind turbine tower prestressed tuned mass damper vibration control seismic excitation numerical simulation
下载PDF
Multiscale and Auto-Tuned Semi-Supervised Deep Subspace Clustering and Its Application in Brain Tumor Clustering
6
作者 Zhenyu Qian Yizhang Jiang +4 位作者 Zhou Hong Lijun Huang Fengda Li Khin Wee Lai Kaijian Xia 《Computers, Materials & Continua》 SCIE EI 2024年第6期4741-4762,共22页
In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world da... In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world data,particularly in the field of medical imaging.Traditional deep subspace clustering algorithms,which are mostly unsupervised,are limited in their ability to effectively utilize the inherent prior knowledge in medical images.Our MAS-DSC algorithm incorporates a semi-supervised learning framework that uses a small amount of labeled data to guide the clustering process,thereby enhancing the discriminative power of the feature representations.Additionally,the multi-scale feature extraction mechanism is designed to adapt to the complexity of medical imaging data,resulting in more accurate clustering performance.To address the difficulty of hyperparameter selection in deep subspace clustering,this paper employs a Bayesian optimization algorithm for adaptive tuning of hyperparameters related to subspace clustering,prior knowledge constraints,and model loss weights.Extensive experiments on standard clustering datasets,including ORL,Coil20,and Coil100,validate the effectiveness of the MAS-DSC algorithm.The results show that with its multi-scale network structure and Bayesian hyperparameter optimization,MAS-DSC achieves excellent clustering results on these datasets.Furthermore,tests on a brain tumor dataset demonstrate the robustness of the algorithm and its ability to leverage prior knowledge for efficient feature extraction and enhanced clustering performance within a semi-supervised learning framework. 展开更多
关键词 Deep subspace clustering multiscale network structure automatic hyperparameter tuning SEMI-SUPERVISED medical image clustering
下载PDF
Parameters Optimization and Performance Evaluation of the Tuned Inerter Damper for the Seismic Protection of Adjacent Building Structures
7
作者 Xiaofang Kang Jian Wu +1 位作者 Xinqi Wang Shancheng Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期551-593,共43页
In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in ... In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in serial or in parallel.The dynamic equations of TID adjacent building damping systems were derived,and the H2 norm criterion was used to optimize and adjust them,so that the system had the optimum damping performance under white noise random excitation.Taking TID frequency ratio and damping ratio as optimization parameters,the optimum analytical solutions of the displacement frequency response of the undamped structure under white noise excitation were obtained.The results showed that compared with the classic TMD,TID could obtain a better damping effect in the adjacent buildings.Comparing the TIDs composed of serial or parallel,it was found that the parallel TIDs had more significant advantages in controlling the peak displacement frequency response,while the H2 norm of the displacement frequency response of the damping system under the coupling of serial TID was smaller.Taking the adjacent building composed of two ten-story frame structures as an example,the displacement and energy collection time history analysis of the adjacent building coupled with the optimum design parameter TIDs were carried out.It was found that TID had a better damping effect in the full-time range compared with the classic TMD.This paper also studied the potential power of TID in adjacent buildings,which can be converted into available power resources during earthquakes. 展开更多
关键词 Adjacent buildings tuned inerter damper(TID) H2 norm optimization vibration control energy harvesting
下载PDF
Classification of Conversational Sentences Using an Ensemble Pre-Trained Language Model with the Fine-Tuned Parameter
8
作者 R.Sujatha K.Nimala 《Computers, Materials & Continua》 SCIE EI 2024年第2期1669-1686,共18页
Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requir... Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88. 展开更多
关键词 Bidirectional encoder for representation of transformer conversation ensemble model fine-tuning generalized autoregressive pretraining for language understanding generative pre-trained transformer hyperparameter tuning natural language processing robustly optimized BERT pretraining approach sentence classification transformer models
下载PDF
Optimizing Enterprise Conversational AI: Accelerating Response Accuracy with Custom Dataset Fine-Tuning
9
作者 Yash Kishore 《Intelligent Information Management》 2024年第2期65-76,共12页
As the realm of enterprise-level conversational AI continues to evolve, it becomes evident that while generalized Large Language Models (LLMs) like GPT-3.5 bring remarkable capabilities, they also bring forth formidab... As the realm of enterprise-level conversational AI continues to evolve, it becomes evident that while generalized Large Language Models (LLMs) like GPT-3.5 bring remarkable capabilities, they also bring forth formidable challenges. These models, honed on vast and diverse datasets, have undoubtedly pushed the boundaries of natural language understanding and generation. However, they often stumble when faced with the intricate demands of nuanced enterprise applications. This research advocates for a strategic paradigm shift, urging enterprises to embrace a fine-tuning approach as a means to optimize conversational AI. While generalized LLMs are linguistic marvels, their inability to cater to the specific needs of businesses across various industries poses a critical challenge. This strategic shift involves empowering enterprises to seamlessly integrate their own datasets into LLMs, a process that extends beyond linguistic enhancement. The core concept of this approach centers on customization, enabling businesses to fine-tune the AI’s functionality to fit precisely within their unique business landscapes. By immersing the LLM in industry-specific documents, customer interaction records, internal reports, and regulatory guidelines, the AI transcends its generic capabilities to become a sophisticated conversational partner aligned with the intricacies of the enterprise’s domain. The transformative potential of this fine-tuning approach cannot be overstated. It enables a transition from a universal AI solution to a highly customizable tool. The AI evolves from being a linguistic powerhouse to a contextually aware, industry-savvy assistant. As a result, it not only responds with linguistic accuracy but also with depth, relevance, and resonance, significantly elevating user experiences and operational efficiency. In the subsequent sections, this paper delves into the intricacies of fine-tuning, exploring the multifaceted challenges and abundant opportunities it presents. It addresses the technical intricacies of data integration, ethical considerations surrounding data usage, and the broader implications for the future of enterprise AI. The journey embarked upon in this research holds the potential to redefine the role of conversational AI in enterprises, ushering in an era where AI becomes a dynamic, deeply relevant, and highly effective tool, empowering businesses to excel in an ever-evolving digital landscape. 展开更多
关键词 Fine-tuning DATASET AI CONVERSATIONAL ENTERPRISE LLM
下载PDF
Application of artificial neural networks in optimal tuning of tuned mass dampers implemented in high-rise buildings subjected to wind load 被引量:8
10
作者 Meysam Ramezani Akbar Bathaei Amir K.Ghorbani-Tanha 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期903-915,共13页
High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an ef... High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom(MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building. 展开更多
关键词 artificial neural networks tuned mass damper wind load auto-regressive model optimal frequency anddamping
下载PDF
超高层Tuned Mass Damper防震支撑系统技术研究应用 被引量:1
11
作者 付正权 张田庆 +3 位作者 陈俊 闵旭 王海江 张茅 《建筑技术开发》 2023年第S01期105-107,共3页
超高层建筑是现代城市建设的重要标志之一,其高度已经超过了传统建筑的极限。然而,随着建筑高度不断增加,地震的破坏力也越来越强,超高层建筑面临着更加严峻的安全挑战。因此,研究超高层建筑防震支撑系统技术非常重要,Tuned Mass Damper... 超高层建筑是现代城市建设的重要标志之一,其高度已经超过了传统建筑的极限。然而,随着建筑高度不断增加,地震的破坏力也越来越强,超高层建筑面临着更加严峻的安全挑战。因此,研究超高层建筑防震支撑系统技术非常重要,Tuned Mass Damper(TMD)是一种被广泛研究和应用的超高层建筑防震支撑系统技术,TMD最初是在20世纪60年代提出的,最早应用于桥梁上,后来,TMD被引入到建筑领域,并得到广泛的应用。通过精确调节质量、阻尼和弹性等参数来削弱地震引起的建筑物减震效应,从而减少了建筑物因地震造成的损害和崩塌的风险. 展开更多
关键词 超高层建筑 破坏力 防震支撑系统 Tuned Mass Damper
下载PDF
PSTCNN: Explainable COVID-19 diagnosis using PSO-guided self-tuning CNN 被引量:3
12
作者 WEI WANG YANRONG PEI +2 位作者 SHUI-HUA WANG JUAN MANUEL GORRZ YU-DONG ZHANG 《BIOCELL》 SCIE 2023年第2期373-384,共12页
Since 2019,the coronavirus disease-19(COVID-19)has been spreading rapidly worldwide,posing an unignorable threat to the global economy and human health.It is a disease caused by severe acute respiratory syndrome coron... Since 2019,the coronavirus disease-19(COVID-19)has been spreading rapidly worldwide,posing an unignorable threat to the global economy and human health.It is a disease caused by severe acute respiratory syndrome coronavirus 2,a single-stranded RNA virus of the genus Betacoronavirus.This virus is highly infectious and relies on its angiotensin-converting enzyme 2-receptor to enter cells.With the increase in the number of confirmed COVID-19 diagnoses,the difficulty of diagnosis due to the lack of global healthcare resources becomes increasingly apparent.Deep learning-based computer-aided diagnosis models with high generalisability can effectively alleviate this pressure.Hyperparameter tuning is essential in training such models and significantly impacts their final performance and training speed.However,traditional hyperparameter tuning methods are usually time-consuming and unstable.To solve this issue,we introduce Particle Swarm Optimisation to build a PSO-guided Self-Tuning Convolution Neural Network(PSTCNN),allowing the model to tune hyperparameters automatically.Therefore,the proposed approach can reduce human involvement.Also,the optimisation algorithm can select the combination of hyperparameters in a targeted manner,thus stably achieving a solution closer to the global optimum.Experimentally,the PSTCNN can obtain quite excellent results,with a sensitivity of 93.65%±1.86%,a specificity of 94.32%±2.07%,a precision of 94.30%±2.04%,an accuracy of 93.99%±1.78%,an F1-score of 93.97%±1.78%,Matthews Correlation Coefficient of 87.99%±3.56%,and Fowlkes-Mallows Index of 93.97%±1.78%.Our experiments demonstrate that compared to traditional methods,hyperparameter tuning of the model using an optimisation algorithm is faster and more effective. 展开更多
关键词 COVID-19 SARS-CoV-2 Particle swarm optimisation Convolutional neural network Hyperparameters tuning
下载PDF
Stark Tuning of Telecom Single-Photon Emitters Based on a Single Er^(3+) 被引量:1
13
作者 Jian-Yin Huang Peng-Jun Liang +7 位作者 Liang Zheng Pei-Yun Li You-Zhi Ma Duan-Chen Liu Jing-Hui Xie Zong-Quan Zhou Chuan-Feng Li Guang-Can Guo 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第7期1-5,共5页
The implementation of scalable quantum networks requires photons at the telecom band and long-lived spin coherence.The single Er^(3+) in solid-state hosts is an important candidate that fulfills these critical require... The implementation of scalable quantum networks requires photons at the telecom band and long-lived spin coherence.The single Er^(3+) in solid-state hosts is an important candidate that fulfills these critical requirements simultaneously.However,to entangle distant Er^(3+) ions through photonic connections,the emission frequency of individual Er^(3+) in solid-state matrix must be the same,which is challenging because the emission frequency of Er^(3+) depends on its local environment.Herein,we propose and experimentally demonstrate the Stark tuning of the emission frequency of a single Er^(3+) in a Y_(2)SiO_(5) crystal by employing electrodes interfaced with a silicon photonic crystal cavity.We obtain a Stark shift of 182.9±0.8 MHz,which is approximately 27 times of the optical emission linewidth,demonstrating promising applications in tuning the emission frequency of independent Er^(3+) into the same spectral channels.Our results provide a useful solution for construction of scalable quantum networks based on single Er^(3+) and a universal tool for tuning emission of individual rare-earth ions. 展开更多
关键词 tuning STARK NETWORKS
下载PDF
Axonal tuning by GABA_(A) receptor unveils novel tricks from an old dog 被引量:1
14
作者 Veronica Bonalume Valerio Magnaghi 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期533-534,共2页
In the last years,axonal conductance of action potential trains became a novel subject of study,changing the view of axons,from a static cable-like compartment to a more complex and dynamic system(Debanne et al.,2011)... In the last years,axonal conductance of action potential trains became a novel subject of study,changing the view of axons,from a static cable-like compartment to a more complex and dynamic system(Debanne et al.,2011).Axonal computation,indeed,is canonically constituted by the action of voltage-gated ion channels,such as the classic Na+and K+channels,but recent studies demonstrated that it can be modulated by the action of other ion channel pumps,and metabolic factors(Byczkowicz et al.,2019;Zang and Marder. 展开更多
关键词 tuning action CLASSIC
下载PDF
Adapter与Prompt Tuning微调方法研究综述 被引量:3
15
作者 林令德 刘纳 王正安 《计算机工程与应用》 CSCD 北大核心 2023年第2期12-21,共10页
文本挖掘是数据挖掘的一个分支学科,涵盖多种技术,其中自然语言处理技术是文本挖掘的核心工具之一,旨在帮助用户从海量数据中获取有用的信息。近年来,预训练模型对自然语言处理的研究和发展有重要的推动作用,预训练模型的微调方法也成... 文本挖掘是数据挖掘的一个分支学科,涵盖多种技术,其中自然语言处理技术是文本挖掘的核心工具之一,旨在帮助用户从海量数据中获取有用的信息。近年来,预训练模型对自然语言处理的研究和发展有重要的推动作用,预训练模型的微调方法也成为重要的研究领域。根据近年来预训练模型微调方法的相关文献,选择目前主流的Adapter与Prompt微调方法进行介绍。对自然语言处理的发展脉络进行简要梳理,分析目前预训练模型微调存在的问题与不足;介绍Adapter与Prompt两类微调方法,对两个研究方向中经典方法进行介绍,并从优缺点和性能等方面进行详细分析;进行总结归纳,阐述目前预训练模型的微调方法存在的局限性并讨论未来发展方向。 展开更多
关键词 文本挖掘 自然语言处理 深度学习 预训练模型 微调方法
下载PDF
Electrode design for multimode suppression of aluminum nitride tuning fork resonators
16
作者 Yi Yuan Qingrui Yang +6 位作者 Haolin Li Shuai Shi Pengfei Niu Chongling Sun Bohua Liu Menglun Zhang Wei Pang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第4期11-21,共11页
This paper is focused on electrode design for piezoelectric tuning fork resonators.The relationship between the performance and electrode pattern of aluminum nitride piezoelectric tuning fork resonators vibrating in t... This paper is focused on electrode design for piezoelectric tuning fork resonators.The relationship between the performance and electrode pattern of aluminum nitride piezoelectric tuning fork resonators vibrating in the in-plane flexural mode is investigated based on a set of resonators with different electrode lengths,widths,and ratios.Experimental and simulation results show that the electrode design impacts greatly the multimode effect induced from torsional modes but has little influence on other loss mechanisms.Optimizing the electrode design suppresses the torsional mode successfully,thereby increasing the ratio of impedance at parallel and series resonant frequencies(R_(p)/R_(s))by more than 80%and achieving a quality factor(Q)of 7753,an effective electromechanical coupling coefficient(kt_(eff)^(2))of 0.066%,and an impedance at series resonant frequency(R_(m))of 23.6 kΩ.The proposed approach shows great potential for high-performance piezoelectric resonators,which are likely to be fundamental building blocks for sensors with high sensitivity and low noise and power consumption. 展开更多
关键词 tuning fork MULTIMODE AlN-based resonator Microelectromechanical systems
下载PDF
Variable stiffness tuned particle dampers for vibration control of cantilever boring bars
17
作者 Xiangying GUO Yunan ZHU +2 位作者 Zhong LUO Dongxing CAO Jihou YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第12期2163-2186,共24页
This research proposes a novel type of variable stiffness tuned particle damper(TPD)for reducing vibrations in boring bars.The TPD integrates the developments of particle damping and dynamical vibration absorber,whose... This research proposes a novel type of variable stiffness tuned particle damper(TPD)for reducing vibrations in boring bars.The TPD integrates the developments of particle damping and dynamical vibration absorber,whose frequency tuning principle is established through an equivalent theoretical model.Based on the multiphase flow theory of gas-solid,it is effective to obtain the equivalent damping and stiffness of the particle damping.The dynamic equations of the coupled system,consisting of a boring bar with the TPD,are built by Hamilton’s principle.The vibration suppression of the TPD is assessed by calculating the amplitude responses of the boring bar both with and without the TPD by the Newmark-beta algorithm.Moreover,an improvement is proposed to the existing gas-solid flow theory,and a comparative analysis of introducing the stiffness term on the damping effect is presented.The parameters of the TPD are optimized by the genetic algorithm,and the results indicate that the optimized TPD effectively reduces the peak response of the boring bar system. 展开更多
关键词 PARTICLE tuned particle damper(TPD) variable stiffness vibration control
下载PDF
A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter
18
作者 丁哲 孙豫蒙 +8 位作者 王孟祺 余佩 郑宁冲 臧一鹏 王鹏飞 王亚 聂越峰 石发展 杜江峰 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期102-107,共6页
We present a magnetic scanning microscope equipped with a nitrogen-vacancy(NV) center scanning probe that has the ability to mechanically tune the strain of soft matter in-situ. The construction of the microscope and ... We present a magnetic scanning microscope equipped with a nitrogen-vacancy(NV) center scanning probe that has the ability to mechanically tune the strain of soft matter in-situ. The construction of the microscope and a continuous straintuning sample holder are discussed. An optically detected magnetic resonance protocol utilized in the imaging is described.In order to show the reliability of this microscope, the strain conduction is estimated with finite element simulation, and xray diffraction is required for calibration when freestanding crystal films are under consideration. A magnetic imaging result is displayed to demonstrate the nano-scale imaging capability. The microscope presented in this work is helpful in studying strain-coupled magnetic physics such as magnetic phase transition under strain and strain-tuned cycloidal orientation tilting. 展开更多
关键词 nitrogen-vacancy(NV)center ANTIFERROMAGNETISM strain tuning soft matter
下载PDF
An 80-GHz DCO utilizing improved SC ladder and promoted DCTL-based hybrid tuning banks
19
作者 Lu Tang Yi Chen Kui Wang 《Journal of Semiconductors》 EI CAS CSCD 2023年第10期87-96,共10页
An 80-GHz DCO based on modified hybrid tuning banks is introduced in this paper.To achieve sub-MHz frequency res-olution with reduced circuit complexity,the improved circuit topology replaces the conventional circuit ... An 80-GHz DCO based on modified hybrid tuning banks is introduced in this paper.To achieve sub-MHz frequency res-olution with reduced circuit complexity,the improved circuit topology replaces the conventional circuit topology with two binary-weighted SC cells,enabling eight SC-cell-based improved SC ladders to achieve the same fine-tuning steps as twelve SC-cell-based conventional SC ladders.To achieve lower phase noise and smaller chip size,the promoted binary-weighted digi-tally controlled transmission lines(DCTLs)are used to implement the coarse and medium tuning banks of the DCO.Compared to the conventional thermometer-coded DCTLs,control bits of the proposed DCTLs are reduced from 30 to 8,and the total length is reduced by 34.3%(from 122.76 to 80.66μm).Fabricated in 40-nm CMOS,the DCO demonstrated in this work fea-tures a small fine-tuning step(483 kHz),a high oscillation frequency(79-85 GHz),and a smaller chip size(0.017 mm^(2)).Com-pared to previous work,the modified DCO exhibits an excellent figure of merit with an area(FoMA)of-198 dBc/Hz. 展开更多
关键词 DCO switched-capacitor ladder sub-MHz digitally controlled transmission lines tuning bank
下载PDF
Hyperparameter Tuning Based Machine Learning Classifier for Breast Cancer Prediction
20
作者 Mohammed Mijanur Rahman Asikur Rahman +1 位作者 Swarnali Akter Sumiea Akter Pinky 《Journal of Computer and Communications》 2023年第4期149-165,共17页
Currently, the second most devastating form of cancer in people, particularly in women, is Breast Cancer (BC). In the healthcare industry, Machine Learning (ML) is commonly employed in fatal disease prediction. Due to... Currently, the second most devastating form of cancer in people, particularly in women, is Breast Cancer (BC). In the healthcare industry, Machine Learning (ML) is commonly employed in fatal disease prediction. Due to breast cancer’s favourable prognosis at an early stage, a model is created to utilize the Dataset on Wisconsin Diagnostic Breast Cancer (WDBC). Conversely, this model’s overarching axiom is to compare the effectiveness of five well-known ML classifiers, including Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN), and Naive Bayes (NB) with the conventional method. To counterbalance the effect with conventional methods, the overarching tactic we utilized was hyperparameter tuning utilizing the grid search method, which improved accuracy, secondary precision, third recall, F1 score and finally the AUC & ROC curve. In this study of hyperparameter tuning model, the rate of accuracy increased from 94.15% to 98.83% whereas the accuracy of the conventional method increased from 93.56% to 97.08%. According to this investigation, KNN outperformed all other classifiers in terms of accuracy, achieving a score of 98.83%. In conclusion, our study shows that KNN works well with the hyper-tuning method. These analyses show that this study prediction approach is useful in prognosticating women with breast cancer with a viable performance and more accurate findings when compared to the conventional approach. 展开更多
关键词 Machine Learning Breast Cancer Prediction Grid Search Hyperparameter tuning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部