For the discrete-time system which is subjected to uncoupled actuator faults and sensor faults simultaneously,a robust fault diagnosis method based on a proportional integral observer (PIO) is presented.The proposed P...For the discrete-time system which is subjected to uncoupled actuator faults and sensor faults simultaneously,a robust fault diagnosis method based on a proportional integral observer (PIO) is presented.The proposed PIO uses an additionally introduced integral term of the output errors to obtain the estimationof actuator faults. Besides, the sensor faults are regarded as the augment states so that the PIO cantrace them. Moreover, the convergence of the PIO is proved. A variable speed wind turbine(VWT) exampleis given to demonstrate the fast convergence and diagnosis precision of the proposed PIO.展开更多
Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed contr...Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed controller is designed by a transfer function model,which is obtained by adaptive differential evolution. Model error,friction and nonlinear factor existing in position loop are treated as ‘disturbance',which is estimated and compensated by generalized proportional integral( GPI)observer. Comparative results are provided to demonstrate the remarkable performance of the proposed method. It turns out that the proposed scheme is successful and has superior features,such as quick dynamic response,low overshoot and high tracking precision. Furthermore,with the proposed method,friction is suppressed effectively.展开更多
基金Supported by the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period (No. 2007BAF10B00).
文摘For the discrete-time system which is subjected to uncoupled actuator faults and sensor faults simultaneously,a robust fault diagnosis method based on a proportional integral observer (PIO) is presented.The proposed PIO uses an additionally introduced integral term of the output errors to obtain the estimationof actuator faults. Besides, the sensor faults are regarded as the augment states so that the PIO cantrace them. Moreover, the convergence of the PIO is proved. A variable speed wind turbine(VWT) exampleis given to demonstrate the fast convergence and diagnosis precision of the proposed PIO.
基金Supported by the National High Technology Research and Development Programme of China(No.2015AA8082065)the National Natural Science Foundation of China(No.61205143)
文摘Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed controller is designed by a transfer function model,which is obtained by adaptive differential evolution. Model error,friction and nonlinear factor existing in position loop are treated as ‘disturbance',which is estimated and compensated by generalized proportional integral( GPI)observer. Comparative results are provided to demonstrate the remarkable performance of the proposed method. It turns out that the proposed scheme is successful and has superior features,such as quick dynamic response,low overshoot and high tracking precision. Furthermore,with the proposed method,friction is suppressed effectively.