Hydraulic fracturing technology plays a key role in improving the recovery rate of shale gas.The improvement of permeability in relation to hydraulic fracturing depends on changes brought about by the proppant on the ...Hydraulic fracturing technology plays a key role in improving the recovery rate of shale gas.The improvement of permeability in relation to hydraulic fracturing depends on changes brought about by the proppant on the fracture structure in reservoirs.Then it is of great significance to describe the microscopic changes during this process by means of an accurate theoretical model.In this study,based on the heterogeneity of shale fracture and the compaction and embedment of a proppant,we proposed a permeability model to examine the combined effects of a proppant and stress to describe the change mechanism in permeability.Further,changes in fracture width and porosity were considered,and a calculation model of fracture compressibility under proppant compaction and embedment was proposed.The difference from previous studies is that the compressibility and permeability of supported fractures can be further quantified and analyzed by this model.Moreover,its rationality was verified by publicly released test data.The results show that,the compressive effect of stress and the embedding of proppant both have a negative impact on shale permeability.展开更多
Hydraulic fracturing is designed to form a high-conductivity fracture. The proppant will embed into the formation rock, especially in soft rock, owing to the interaction between proppant and fracture surface after fra...Hydraulic fracturing is designed to form a high-conductivity fracture. The proppant will embed into the formation rock, especially in soft rock, owing to the interaction between proppant and fracture surface after fracture closure. Proppant embedment would reduce the fracture width and then lower the fracture conductivity. According to dimensional analysis, the rock is assumed to be an elastic material. Using the theory of elasticity to describe the stage of elastic deformation and analysis of the corresponding simplified embedding process, the study establish the static computation model of the two-dimensional infinite half plane and three-dimensional infinite half space model of the proppant embedment. According to laboratory results, the calculation model was modified, got an effective correction factor and analyzed the causes of errors, then discussed the factors which have impact on proppant embedment. The result calculated by the model in this paper can be reference of prop- pant optimization in on-site fracturing for a certainty degree.展开更多
Crushing and embedment are two critical downhole proppant degradation mechanisms that lead to a significant drop in production outputs in unconventional oil/gas stimulation projects. These persistent production drops ...Crushing and embedment are two critical downhole proppant degradation mechanisms that lead to a significant drop in production outputs in unconventional oil/gas stimulation projects. These persistent production drops due to the non-linear responses of proppants under reservoir conditions put the future utilization of such advanced stimulation techniques in unconventional energy extraction in doubt. The aim of this study is to address these issues by conducting a comprehensive experimental approach. According to the results, whatever the type of proppant, all proppant packs tend to undergo significant plastic deformation under the first loading cycle.Moreover, the utilization of ceramic proppants(which retain proppant pack porosity up to 75%), larger proppant sizes(which retain proppant pack porosity up to 15.2%) and higher proppant concentrations(which retain proppant pack porosity up to 29.5%) in the fracturing stimulations with higher in-situ stresses are recommended to de-escalate the critical consequences of crushing associated issues. Similarly, the selection of resin-coated proppants over ceramic and sand proppants may benefit in terms of obtaining reduced proppant embedment.In addition, selection of smaller proppant sizes and higher proppant concentrations are suggested for stimulation projects at depth with sedimentary formations and lower in-situ stresses where proppant embedment predominates. Furthermore, correlation between proppant embedment with repetitive loading cycles was studied.Importantly, microstructural analysis of the proppant-embedded siltstone rock samples revealed that the initiation of secondary induced fractures. Finally, the findings of this study can greatly contribute to accurately select optimum proppant properties(proppant type, size and concentration) depending on the oil/gas reservoir characteristics to minimize proppant crushing and embedment effects.展开更多
We aim at the development of a general modelling workflow for design and optimization of the well flowback and startup operation on hydraulically fractured wells.Fracture flowback model developed earlier by the author...We aim at the development of a general modelling workflow for design and optimization of the well flowback and startup operation on hydraulically fractured wells.Fracture flowback model developed earlier by the authors is extended to take into account several new fluid mechanics factors accompanying flowback,namely,viscoplastic rheology of unbroken cross-linked gel and coupled“fracture-reservoir”numerical submodel for influx from rock formation.We also developed models and implemented new geomechanical factors,namely,(i)fracture closure in gaps between proppant pillars and in proppant-free cavity in the vicinity of the well taking into account formation creep;(ii)propagation of plastic deformations due to tensile rock failure from the fracture face into the fluid-saturated reservoir.We carried out parametric calculations to study the dynamics of fracture conductivity during flowback and its effect on well production for the set of parameters typical of oil wells in Achimov formation of Western Siberia,Russia.The first set of calculations is carried out using the flowback model in the reservoir linear flow regime.It is obtained that the typical length of hydraulic fracture zone,in which tensile rock failure at the fracture walls occurs,is insignificant.In the range of rock permeability in between 0.01 mD and 1 D,we studied the effect of non-dimensional governing parameters as well as bottomhole pressure drop dynamics on oil production.We obtained a map of pressure drop regimes(fast,moderate or slow)leading to maximum cumulative oil production.The second set of parametric calculations is carried out using integrated well production modelling workflow,in which the flowback model acts as a missing link in between hydraulic fracturing and reservoir commercial simulators.We evaluated quantitatively effects of initial fracture aperture,proppant diameter,yield stress of fracturing fluid,pressure drop rate and proppant material type(ceramic and sand)on long-term well production beyond formation linear regime.The third set of parametric calculations is carried out using the flowback model history-matched to field data related to production of four multistage hydraulically fractured oil wells in Achimov formation of Western Siberia,Russia.On the basis of the matched model we evaluated geomechanics effects on fracture conductivity degradation.We also performed sensitivity analysis in the framework of the history-matched model to study the impact of geomechanics and fluid rheology parameters on flowback efficiency.展开更多
基金financially supported by the National Natural Science Foundation of China(Grants No.52064007,51804085,and 51911530203)supported by Guizhou Provincial Science and Technology Projects(Qianke Combination Foundation-ZK[2021]Key 052)
文摘Hydraulic fracturing technology plays a key role in improving the recovery rate of shale gas.The improvement of permeability in relation to hydraulic fracturing depends on changes brought about by the proppant on the fracture structure in reservoirs.Then it is of great significance to describe the microscopic changes during this process by means of an accurate theoretical model.In this study,based on the heterogeneity of shale fracture and the compaction and embedment of a proppant,we proposed a permeability model to examine the combined effects of a proppant and stress to describe the change mechanism in permeability.Further,changes in fracture width and porosity were considered,and a calculation model of fracture compressibility under proppant compaction and embedment was proposed.The difference from previous studies is that the compressibility and permeability of supported fractures can be further quantified and analyzed by this model.Moreover,its rationality was verified by publicly released test data.The results show that,the compressive effect of stress and the embedding of proppant both have a negative impact on shale permeability.
基金Supported by the Sichuan Youth Science & Technology Foundation (2011JTD0009) the National Natural Science Foundation of China (51074138)
文摘Hydraulic fracturing is designed to form a high-conductivity fracture. The proppant will embed into the formation rock, especially in soft rock, owing to the interaction between proppant and fracture surface after fracture closure. Proppant embedment would reduce the fracture width and then lower the fracture conductivity. According to dimensional analysis, the rock is assumed to be an elastic material. Using the theory of elasticity to describe the stage of elastic deformation and analysis of the corresponding simplified embedding process, the study establish the static computation model of the two-dimensional infinite half plane and three-dimensional infinite half space model of the proppant embedment. According to laboratory results, the calculation model was modified, got an effective correction factor and analyzed the causes of errors, then discussed the factors which have impact on proppant embedment. The result calculated by the model in this paper can be reference of prop- pant optimization in on-site fracturing for a certainty degree.
文摘Crushing and embedment are two critical downhole proppant degradation mechanisms that lead to a significant drop in production outputs in unconventional oil/gas stimulation projects. These persistent production drops due to the non-linear responses of proppants under reservoir conditions put the future utilization of such advanced stimulation techniques in unconventional energy extraction in doubt. The aim of this study is to address these issues by conducting a comprehensive experimental approach. According to the results, whatever the type of proppant, all proppant packs tend to undergo significant plastic deformation under the first loading cycle.Moreover, the utilization of ceramic proppants(which retain proppant pack porosity up to 75%), larger proppant sizes(which retain proppant pack porosity up to 15.2%) and higher proppant concentrations(which retain proppant pack porosity up to 29.5%) in the fracturing stimulations with higher in-situ stresses are recommended to de-escalate the critical consequences of crushing associated issues. Similarly, the selection of resin-coated proppants over ceramic and sand proppants may benefit in terms of obtaining reduced proppant embedment.In addition, selection of smaller proppant sizes and higher proppant concentrations are suggested for stimulation projects at depth with sedimentary formations and lower in-situ stresses where proppant embedment predominates. Furthermore, correlation between proppant embedment with repetitive loading cycles was studied.Importantly, microstructural analysis of the proppant-embedded siltstone rock samples revealed that the initiation of secondary induced fractures. Finally, the findings of this study can greatly contribute to accurately select optimum proppant properties(proppant type, size and concentration) depending on the oil/gas reservoir characteristics to minimize proppant crushing and embedment effects.
文摘We aim at the development of a general modelling workflow for design and optimization of the well flowback and startup operation on hydraulically fractured wells.Fracture flowback model developed earlier by the authors is extended to take into account several new fluid mechanics factors accompanying flowback,namely,viscoplastic rheology of unbroken cross-linked gel and coupled“fracture-reservoir”numerical submodel for influx from rock formation.We also developed models and implemented new geomechanical factors,namely,(i)fracture closure in gaps between proppant pillars and in proppant-free cavity in the vicinity of the well taking into account formation creep;(ii)propagation of plastic deformations due to tensile rock failure from the fracture face into the fluid-saturated reservoir.We carried out parametric calculations to study the dynamics of fracture conductivity during flowback and its effect on well production for the set of parameters typical of oil wells in Achimov formation of Western Siberia,Russia.The first set of calculations is carried out using the flowback model in the reservoir linear flow regime.It is obtained that the typical length of hydraulic fracture zone,in which tensile rock failure at the fracture walls occurs,is insignificant.In the range of rock permeability in between 0.01 mD and 1 D,we studied the effect of non-dimensional governing parameters as well as bottomhole pressure drop dynamics on oil production.We obtained a map of pressure drop regimes(fast,moderate or slow)leading to maximum cumulative oil production.The second set of parametric calculations is carried out using integrated well production modelling workflow,in which the flowback model acts as a missing link in between hydraulic fracturing and reservoir commercial simulators.We evaluated quantitatively effects of initial fracture aperture,proppant diameter,yield stress of fracturing fluid,pressure drop rate and proppant material type(ceramic and sand)on long-term well production beyond formation linear regime.The third set of parametric calculations is carried out using the flowback model history-matched to field data related to production of four multistage hydraulically fractured oil wells in Achimov formation of Western Siberia,Russia.On the basis of the matched model we evaluated geomechanics effects on fracture conductivity degradation.We also performed sensitivity analysis in the framework of the history-matched model to study the impact of geomechanics and fluid rheology parameters on flowback efficiency.